Сложение комплексных чисел




Суммой двух комплексных чисел z1 = a + bi и z2 = c + di называется комплексное число z = (a+c) + (b+d)i.

Числа a + bi и a-bi называются сопряженными. Их сумма равна действительному числу 2а, (а+bi) + (а-bi) = 2а.

Числа а+bi и -a-bi называются противоположными. Их сумма равна нулю. Комплексные числа равны, если равны их действительные части и коэффициенты мнимых частей: а+bi = c+di, если a = c, b = d.

Комплексное число равно нулю тогда, когда его действительная часть и коэффициент мнимой части равны нулю, т.е. z = a + bi = 0, если a = 0,b = 0.

Действительные числа являются частным случаем комплексных чисел. Если b = 0, то a + bi = a - действительное число.

Если а = 0, b 0, то a + bi = bi – чисто мнимое число. Для комплексных чисел справедливы переместительный и сочетательный законы сложения. Их справедливость следует из того, что сложение комплексных чисел по существу сводится к сложению действительных частей и коэффициентов мнимых частей, а они являются действительными числами, для которых справедливы указанные законы.

Пример 1. (-3 + 5i) + (4 – 8i) = 1 - 3i

Пример 2. (2 + 0i) + (7 + 0i) = 9 + 0i. Так как запись 2 + 0i означает то же, что и 2 и т. д., то наполненное действие согласуется с обычной арифметикой (2 + 7=9).

Пример 3. (0 + 2i) + (0 + 5i) = 0 + 7i, т. е. 2i + 5i = 7i

Пример 4. (-2 + 3i) + (- 2 – 3i) = - 4

 

Вычитание комплексных чисел

Вычитание комплексных чисел определяется как действие, обратное сложению: разностью двух комплексных чисел a + bi и с + di называется комплексное число х + уi, которое в сумме с вычитаемым дает уменьшаемое. Отсюда, исходя из определения сложения и равенства комплексных чисел получим два уравнения, из которых найдем, что х = а-с, у = b-d. Значит, (а+bi) - (c+di) = (a-c) + (b-d)i.

Пример 1. (-5 + 2i) – (3 – 5i) = -8 + 7i

Пример 2. (3 + 2i) – (-3 + 2i) = 6 + 0i = 6

 

Произведение комплексных чисел

z 1= a + bi * z2 = c + di называется комплексное число z = (ac-bd) + (ad + bc)i, z1z2 = (a + bi)(c + di) = (ac - bd) + (ad + bc)i.

Легко проверить, что умножение комплексных чиcел можно выполнять как умножение многочленов с заменой i2 на –1. Для умножения комплексных чисел также справедливы переместительный и сочетательный законы, а также распределительный закон умножения по отношению к сложению.

Из определения умножения получим, что произведение сопряженных комплексных чисел равно действительному числу: (a + bi)(a - bi) = a2 + b2

Деление комплексных чисел, кроме деления на нуль, определяется как действие, обратное умножению. Конкретное правило деления получим, записав частное в виде дроби и умножив числитель и знаменатель этой дроби на число, сопряженное со знаменателем:

(a + bi):(c + di) = = = + i.

Степень числа i является периодической функцией показателя с периодом 4. Действительно,

i2 = -1, i3 = -i, i4 = 1, i4n = (i4)n = 1n = 1, i4n+1 = i, i4n+2 = -1, i4n+3 = -i.

Пример 1. (1 – 2i)(3 + 2i) = 3 – 6i + 2i – 4i 2 ­ = 3 – 6i + 2i + 4 = 7 – 4i.

Пример 2. (a + bi)(a – bi) = a2 + b 2

Пример 3. Найти частное (7 – 4i):(3 + 2i).

Записав дробь (7 – 4i)/(3 + 2i), расширяем её на число 3 – 2i, сопряженное с 3 + 2i. Получим:

((7 – 4i)(3 - 2i))/((3 + 2i)(3 – 2i)) = (13 – 26i)/13 = 1 – 2i.

Пример 2 показывает, что произведение сопряженных комплексных чисел есть действительное и притом положительное число.

Для умножения комплексных чисел также справедливы переместительный и сочетательный законы, а также распределительный закон умножения по отношению к сложению.

 

Извлечение корней

Извлечение корня из комплексного числа есть действие, обратное возведению в степень. С его помощью по данной степени (подкоренное число) и данному показателю степени (показатель корня) находят основание (корень). Иначе говоря, это действие равносильно решению уравнения zn=a для нахождения z. В множестве комплексных чисел действие извлечения корня всегда выполнимо, хотя причем и неоднозначно: в результате получается столько значений, каков показатель корня. В частности, квадратный корень имеет ровно два значения, которые можно найти по формуле:

√a=√α+iβ=±((√|a|+α)/2 ± i(√|a|-α)/2)),

где знак «+» в скобках берется при β>0, «-» - при β<0.

Арифметические действия с комплексными числами в тригонометрической форме показаны на.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: