Система обозначений ядер




Опыт Резерфорда. Ядерная модель атома

Древнегреческие и древнеиндийские учёные и философы считали, что все окружающие нас вещества состоят из мельчайших частиц, которые не делятся.

Они были уверены, что в мире не существует ничего, что было бы меньше этих частиц, которые они назвали атомами. И, действительно, впоследствии существование атомов было доказано такими известными учёными, как Антуан Лавуазье, Михаил Ломоносов, Джон Дальтон. Неделимым атом считали вплоть до конца XIX – начала ХХ века, когда выяснилось, что это не так.

Открытие электрона. Модель атома Томсона

Джозеф Джон Томсон

В 1897 г. английский физик Джозеф Джон Томсон, изучая экспериментально поведение катодных лучей в магнитном и электрическом полях, выяснил, что эти лучи представляют собой поток отрицательно заряженных частиц. Скорость движения этих частиц была ниже скорости света. Следовательно, они имели массу. Откуда же они появлялись? Учёный предположил, что эти частицы входят в состав атома. Он назвал их корпускулами. Позже они стали называться электронами. Так открытие электрона положило конец теории о неделимости атома.

Модель атома Томсона

Томсон предложил первую электронную модель атома. Согласно ей атом представляет собой шар, внутри которого находится заряженное вещество, положительный заряд которого равномерно распределён по всему объёму. А в это вещество, как изюминки в булочке, вкраплены электроны. В целом атом электрически нейтрален. Эту модель назвали "моделью сливового пудинга".

Но модель Томсона оказалась неверной, что было доказано британским физиком сэром Эрнестом Резерфордом.

Опыт Резерфорда

Эрнест Резерфорд

Как же всё-таки устроен атом? На этот вопрос Резерфорд дал ответ после своего эксперимента, проведенного в 1909 г. совместно с немецким физиком Гансом Гейгером и новозеландским физиком Эрнстом Марсденом.

Опыт Резерфорда

 

Целью опыта было исследование атома с помощью альфа-частиц, сфокусированный пучок которых, летящий с огромной скоростью, направлялся на тончайшую золотую фольгу. За фольгой располагался люминесцентный экран. При столкновении с ним частиц возникали вспышки, которые можно было наблюдать в микроскоп.

Если Томсон прав, и атом состоит из облака с электронами, то частицы должны были легко пролетать через фольгу, не отклоняясь. Так как масса альфа-частицы превышала массу электрона примерно в 8000 раз, то электрон не мог воздействовать на неё и отклонять её траекторию на большой угол, подобно тому, как камешек весом в 10 г не смог бы изменить траекторию движущегося автомобиля.

Но на практике всё оказалось по-другому. Большинство частиц действительно пролетало через фольгу, практически не отклоняясь или отклоняясь на небольшой угол. Но часть частиц отклонялась довольно значительно или даже отскакивала назад, словно на их пути возникало какое-то препятствие. Как сказал сам Резерфорд, это было так же невероятно, как если бы 15-дюймовый снаряд отскочил от куска папиросной бумаги.

Что же заставило некоторые альфа-частицы так сильно изменить направление движения? Учёный предположил, что причиной этому стала часть атома, сосредоточенная в очень малом объёме и имеющая положительный заряд. Её он назвал ядром атома.

 

Планетарная модель атома Резерфорда

Модель атома Резерфорда

Резерфорд пришёл к выводу, что атом состоит из плотного положительно заряженного ядра, расположенного в центре атома, и электронов, имеющих отрицательный заряд. В ядре сосредоточена практически вся масса атома. В целом атом нейтрален. Положительный заряд ядра равен сумме отрицательных зарядов всех электронов атома. Но электроны не вкраплены в ядро, как в модели Томсона, а вращаются вокруг него подобно планетам, вращающимся вокруг Солнца. Вращение электронов происходит под действием кулоновской силы, действующей на них со стороны ядра. Скорость вращения электронов огромна. Над поверхностью ядра они образуют подобие облака. Каждый атом имеет своё электронное облако, заряженное отрицательно. По этой причине они не «слипаются», а отталкиваются друг от друга.

Из-за своей схожести с Солнечной системой модель Резерфорда была названа планетарной.

Почему атом существует

Однако модель атома Резерфорда не смогла объяснить, почему атом так устойчив. Ведь, согласно законам классической физики, электрон, вращаясь на орбите, движется с ускорением, следовательно, излучает электромагнитные волны и теряет энергию. В конце концов эта энергия должна иссякнуть, а электрон должен упасть на ядро. Если бы это было так, атом смог бы существовать всего лишь 10 -8 с. Но почему этого не происходит?

Причину этого явления позже объяснил датский физик Нильс Бор. Он предположил, что электроны в атоме двигаются только по фиксированным орбитам, которые называются «разрешёнными орбитами». Находясь на них, они не излучают энергию. А излучение или поглощение энергии происходит только при переходе электрона с одной разрешённой орбиты на другую. Если это переход с дальней орбиты на более близкую к ядру, то энергия излучается, и наоборот. Излучение происходит порциями, которые назвали квантами.

Хотя описанная Резерфордом модель не смогла объяснить устойчивость атома, она позволила значительно продвинуться вперёд в изучении его строения.

Модель атома Резерфорда противоречит классической электродинамике Максвелла. Выход из сложившейся ситуации был найден Нильсом Бором. В 1913 году он дополнил модель Резерфорда двумя постулатами, называемыми квантовыми постулатами Бора.

Первый постулат Бора (постулат стационарных состояний):

В атоме существуют стационарные орбиты, двигаясь по которым электрон не излучает.

Второй постулат (правило частот): Излучение и поглощение энергии происходит при переходе электрона с одной стационарной орбиты на другую.

Энергия излучённого или поглощённого фотона равна разности энергий стационарных состояний

hvkn = Ek - En;

Частота излучения равна:

vkn = (Ek - En) / h

Или, длина волны излучения λ равна:

λkn = hc / (Ek - En), где h – постоянная Планка, с – скорость света в вакууме.

Если Ek > En, то происходит излучение фотона, если Ek < En, то происходит поглощение фотона, при котором атом переходит из одного стационарного состояния в другое. Энергия электрона, как и скорость и радиус орбиты, принимают дискретный набор значений, т. е. квантуются. Расчеты частот переходов с энергетических уровней для атома водорода дают значения, совпадающие с экспериментальными величинами спектра водорода.

 

Строение атомного ядра.

Атом – это мельчайшая частица химического элемента, сохраняющая все его свойства. По своей структуре атом представляет сложную систему, состоящую из находящегося в центре атома положительно заряженного ядра очень малого размера (10-13 см) и отрицательно заряженных электронов, вращающихся вокруг ядра на различных орбитах.

Атомное ядро состоит из нуклонов — положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом.

Количество протонов в ядре называется его зарядовым числом Z {\displaystyle Z} Z — это число равно порядковому номеру элемента, к которому относится атом, в таблице (Периодической системе элементов) Менделеева. Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Полное количество нуклонов в ядре называется его массовым числом A {\displaystyle A} (A = N + Z {\displaystyle A=N+Z} A) и приблизительно равно средней массе атома, указанной в таблице Менделеева.

Система обозначений ядер

Для обозначения атомных ядер используется следующая система:

  • в середине ставится символ химического элемента, что однозначно определяет зарядовое число Z {\displaystyle Z} Z ядра;

Z AX

  • слева сверху от символа элемента ставится массовое число A {\displaystyle A}. A

Таким образом, состав ядра оказывается полностью определён, так как N = A − Z {\displaystyle N=A-Z}. N = A – Z, где

N – это число нейтронов в ядре

Пример такого обозначения: 92 238U --

— ядро урана-238, в котором 238 нуклонов, из которых 92 — протоны, так как элемент уран имеет 92-й номер в таблице Менделеева.

Иногда, однако, для полноты вокруг обозначения элемента указывают все характеризующие ядро его атома числа:

· слева снизу — зарядовое число Z Z {\displaystyle Z}, то есть, то же самое, что указано символом элемента; оно указывает а)на порядковый номер в таблице Менделеева, б)число электронов в атоме, в)число протонов в ядре, г) заряд ядра атома в элементарных электрических зарядов (э.э.з.), д) зарядовое число

· слева сверху — массовое число A {\displaystyle A}A; оно указывает на а) на массу ядра атома в атомных единицах массы (а.е.м), б) массовое число (сумма протонов и нейтронов, т.е. число нуклонов)

Например: 3 7Li

порядковый номер в таблице Менделеева – 3

число электронов в атоме – 3 (число электронов в атоме = числу протонов в ядре)

число протонов в ядре - 3

заряд ядра атома в элементарных электрических зарядов – (+ 7 э.э.з)

зарядовое число – 3

масса ядра атома в атомных единицах массы (а.е.м) – 7а.е.м.

число нуклонов – 7

массовое число (сумма протонов и нейтронов) – 7

число нейтронов – 4 N = A – Z

По историческим и иным причинам, некоторые ядра имеют самостоятельные названия. Например, ядро 4He называется α-частицей, ядро дейтерия 2H (или D) — дейтроном, а ядро трития 3H (или T) — тритоном. Последние два ядра являются изотопами водорода и поэтому могут входить в состав молекул воды, давая в итоге так называемую тяжёлую воду(Н2О2).

ДОМАШНЕЕ ЗАДАНИЕ

Для работы можно использовать табл. Менделеева

Вариант.

1. В атомном ядре содержится 25 протонов и 30 нейтронов. Каким положительным зарядом, выраженным в элементарных электрических зарядах, обладает это атомное ядро?

А. +5э.э.з; Б. +30э.э.з; В. +25э.э.з; Г. 0.

2. Из каких частиц состоят ядра атомов?

А. из протонов; Б. из нейтронов; В. из протонов, нейтронов и электронов;
Г. из протонов и нейтронов.

3. Сколько электронов содержится в электронной оболочке нейтрального атома, у которого ядро состоит из 6 протонов и 8 нейтронов?

А. 6; Б. 8; В. 2; Г. 14.

4. Массовое число – это:

А. число протонов в ядре; Б. число нейтронов в ядре; В. число электронов в электронной оболочке; Г. число нуклонов в ядре.

5. 2713Al – определить нуклонный состав ядра атома алюминия

2 вариант.

1. Атом любого химического элемента состоит из:

А. Электронов и протонов. Б. Нуклонов и электронов. В. Протонов и нейтронов.

2. Изотопы – это разновидности данного химического элемента, различающиеся:

А по массе атомных ядер. Б. по заряду атомных ядер. В. по месту в таблице. Менделеева.

3. Ядро изотопа 105В содержит:

А. 5р и 10n; Б. 5р и 5 n; В5р и 10n; Г. 10р и 5 n. (n. – нейтрон, р – протон)

4. 2714Si - определить зарядовое число, число нейтронов, число протонов, заряд ядра

5. 5625Mn - определить состав ядра атома.

1 2 H {\displaystyle {}_{1}^{2}{\textrm {H}}}7 14 N {\displaystyle {}_{7}^{14}{\textrm {N}}}



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-07-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: