Технология производства работ в экстремальных условиях
Алматы 2013
Введение
Лекционный материал предназначен для студентов специальности «Строительство», изучающих дисциплину «Технология производства работ в экстремальных условиях». Согласно рабочей программе дисциплины, разработанных на основе Государственного образовательного стандарта (ГОСО), студент должен знать методические и нормативные материалы относящиеся к строительной отрасли, эффективные проектные решения, отвечающие требованиям перспективного развития отрасли, и владеть методами расчетов зданий и сооружений, методами выполнения общестроительных и специальных работ, методами решения научно-технических, организационно-технических и конструкторско-технологических задач в области промышленного и гражданского строительства [1, 2].
Лекционный материал содержит основные формулы и указания по решению задач изучаемых в курсе «Технология производства работ в экстремальных условиях». Кроме этого, предлагается набор различных типов задач для самостоятельного освоения методик и способов их решения с целью закрепления пройденного лекционного материала.
Задания выдаются студентам в течение всего семестра по графику, установленному преподавателем. Можно рекомендовать следующий минимальны объем заданий: задача 1 – по две задачи для каждого студента, задачи 2, 3, и 4 – по одной задаче.
Определение коэффициента суровости
Влияние климата на производство строительно-монтажных работ рекомендуется оценивать показателем суровости [4], определяемым в условных баллах по формуле
С = – t + k·v, (1)
где t – средняя отрицательная температура наружного воздуха за рассматриваемый период (день, неделя, месяц, квартал и т.д.), оС;
|
v – скорость ветра за рассматриваемый период, м/с;
k – коэффициент влияния ветра на человека (принимается равным 1 при v ≤ 5 м/с, 2 при v > 5 м/с).
При этом необходимо учитывать, что запрещается выполнять любые виды строительно-монтажных работ:
1) на открытом воздухе и приравненных к ним условиях при С > 45;
2) при температуре наружного воздуха ниже –30 оС;
3) при скорости ветра более 22 м/с;
4) при видимости менее 20 м.
Кроме этого, при скорости ветра более 10 м/с прекращаются работы башенных кранов и других машин и механизмов, связанных с подъемом грузов.
Варианты задач
1.1. Сделать заключение о возможности производства работ по возведению кирпичной кладки в городе Астана в декабре. Средняя температура наружного воздуха составляет –17 оС, ожидаемая скорость ветра 39,6 м/с, видимость 20 метров.
1.2. Сделать заключение о возможности производства работ по бетонированию фундаментов в городе Караганде в январе. Средняя температура наружного воздуха составляет –12 оС, ожидаемая скорость ветра 16 м/с, видимость 22 метра.
1.3. Сделать заключение о возможности производства работ по монтажу профилированного листа на кровлю в городе Кокшетау в феврале месяце. Средняя температура наружного воздуха составляет –25 оС, ожидаемая скорость ветра 3,4 км/ч, видимость 15 метров.
1.4. Сделать заключение о возможности производства работ по бетонированию фундаментов в городе Кокшетау январе. Средняя температура наружного воздуха составляет –22 оС, ожидаемая скорость ветра 22 м/с, видимость 20 метров.
|
1.5. Сделать заключение о возможности производства работ по монтажу стеновых панелей из профилированного листа в городе Костанай в феврале. Средняя температура наружного воздуха составляет –12 оС, ожидаемая скорость ветра 36 км/ч, видимость 22 метра.
1.6. Сделать заключение о возможности производства работ по бетонированию фундаментов в городе Павлодаре в декабре. Средняя температура наружного воздуха составляет –27оС, ожидаемая скорость ветра 9 м/с, видимость 38 метров.
1.7. Сделать заключение о возможности производства работ по забивке свай в городе Джезказган в январе. Средняя температура наружного воздуха составляет –22оС, ожидаемая скорость ветра 20 м/с, видимость 32 метра.
1.8. Сделать заключение о возможности производства работ по отделке фасадов в городе Петропавлске в декабре. Средняя температура наружного воздуха составляет –23оС, ожидаемая скорость ветра 25,2 км/ч, видимость 23 метра.
1.9. Сделать заключение о возможности производства работ по монтажу стеновых панелей каркасно-панельного здания башенным краном. Работы производятся в городе Челябинске, в феврале, с ожидаемой скоростью ветра на рассматриваемый период 16 м/с, средняя температура составляет –20,3оС, видимость 32 метра.
1.10. Сделать заключение о возможности производства работ по монтажу ленточных фундаментов в городе Актобе в январе. Средняя температура наружного воздуха составляет –21оС, ожидаемая скорость ветра 4 м/с, видимость 16 метров.
1.11. Определить возможность производства монтажных работ при устройстве перекрытия на последнем этаже многоэтажного здания с помощью башенного крана в городе Уральск в феврале. Средняя температура наружного воздуха t = –18оС, скорость ветра 14 м/с, видимость 25 метров.
|
1.12. Сделать заключение о возможности производства работ по монтажу железобетонных колон одноэтажного промышленного здания в городе Сатпаев в январе. Средняя температура наружного воздуха составляет –23оС, ожидаемая скорость ветра 20 м/с, видимость 33 метра.
1.13. Сделать заключение о возможности производства работ по монтажу кровельных плит башенным краном в городе Рудный в январе. Средняя температура наружного воздуха составляет –20оС, ожидаемая скорость ветра 6 м/с, видимость 19 метров.
1.14. Сделать заключение о возможности производства работ по укладке труб колёсным краном в городе Кызылорде в марте. Средняя температура наружного воздуха составляет 0оС, ожидаемая скорость ветра 22,5 м/с, видимость 27 метров.
1.15. Сделать заключение о возможности производства работ по планировке площадки в Экибастузе в январе. Средняя температура наружного воздуха составляет –35оС, ожидаемая скорость ветра 15 м/с, видимость 30 метров.
1.16. Сделать заключение о возможности производства работ по бетонированию перекрытий 14-ти этажного дома методом «кран-бадья» в Темиртау в январе. Средняя температура наружного воздуха составляет –17оС, ожидаемая скорость ветра 42,2 км/ч, видимость 22 метра.
1.17. Сделать заключение о возможности производства земляных работ по устройству котлована в городе ____________в декабре. Средняя температура наружного воздуха составляет –12оС, ожидаемая скорость ветра 25 м/с, видимость 22 метра.
1.18. Сделать заключение о возможности производства работ по монтажу кровли в городе _______ в марте. Средняя температура наружного воздуха составляет –10оС, ожидаемая скорость ветра 4 м/с, видимость 18 метров.
1.19. Сделать заключение о возможности производства земляных работ в городе _____________ в январе. Средняя температура наружного воздуха составляет –29оС, ожидаемая скорость ветра 12 м/с, видимость 15 метров.
1.20. Сделать заключение о возможности производства работ по монтажу стеновых панелей крупнопанельного здания в городе _________ декабре. Средняя температура наружного воздуха составляет –14оС, ожидаемая скорость ветра 13 м/с, видимость 28 метров.
1.21. Сделать заключение о возможности производства работ по строительству фермы в _________ в ноябре. Средняя температура наружного воздуха составляет –23оС, ожидаемая скорость ветра 32,4 км/ч, видимость 0,015 км.
1.22. Сделать заключение о возможности производства работ по строительству очистных сооружений в __________ в феврале. Средняя температура наружного воздуха составляет –33оС, ожидаемая скорость ветра 3 м/с, видимость 0,025 км.
1.23. Сделать заключение о возможности производства работ по возведению кирпичной кладки в городе _________ в декабре. Средняя температура наружного воздуха составляет –17оС, ожидаемая скорость ветра 39,6 км/ч, видимость 20 метров.
1.24. Сделать заключение о возможности производства работ по бетонированию фундаментов в городе___________в январе. Средняя температура наружного воздуха составляет –32оС, ожидаемая скорость ветра 6 м/с, видимость 22 метра.
1.25. Сделать заключение о возможности производства работ по монтажу профилированного листа на кровлю в городе ___________ в феврале месяце. Средняя температура наружного воздуха составляет –20оС, ожидаемая скорость ветра 32,4 км/ч, видимость 15 метров.
1.26. Сделать заключение о возможности производства работ по бетонированию фундаментов в городе ____________ в январе. Средняя температура наружного воздуха составляет –22оС, ожидаемая скорость ветра 12 м/с, видимость 20 метра.
1.27. Сделать заключение о возможности производства работ по монтажу стеновых панелей из профилированного листа в городе ____________ в феврале. Средняя температура наружного воздуха составляет –22оС, ожидаемая скорость ветра 36 км/ч, видимость 20 метров.
1.28. Сделать заключение о возможности производства работ по бетонированию фундаментов в городе __________ в декабре. Средняя температура наружного воздуха составляет –17оС, ожидаемая скорость ветра 9 м/с, видимость 35 метров.
1.29. Сделать заключение о возможности производства работ по забивке свай в городе ___________в январе. Средняя температура наружного воздуха составляет –22оС, ожидаемая скорость ветра 10 м/с, видимость 22 метра.
1.30. Сделать заключение о возможности производства работ по отделке фасадов в городе _________в декабре. Средняя температура наружного воздуха составляет –25оС, ожидаемая скорость ветра 25,2 км/ч, видимость 22 метра.
1.31. Сделать заключение о возможности производства работ по монтажу стеновых панелей каркасно-панельного здания башенным краном. Работы производятся в городе __________, в феврале, с ожидаемой скоростью ветра на рассматриваемый период 15 м/с, средняя температура составляет –20,3оС, видимость 30 метров.
1.32. Сделать заключение о возможности производства работ по монтажу ленточных фундаментов в городе________ в январе. Средняя температура наружного воздуха составляет –20оС, ожидаемая скорость ветра 5 м/с, видимость 15 метров.
1.33. Определить возможность производства монтажных работ при устройстве перекрытия на последнем этаже многоэтажного здания с помощью башенного крана в городе ____________ в феврале. Средняя температура наружного воздуха t = –15оС, скорость ветра 12 м/с, видимость 25 метров.
1.34. Сделать заключение о возможности производства работ по монтажу железобетонных колон одноэтажного промздания в городе _______ в январе. Средняя температура наружного воздуха составляет –25оС, ожидаемая скорость ветра 10 м/с, видимость 33 метра.
1.35. Сделать заключение о возможности производства работ по монтажу кровельных плит башенным краном в городе_______ в январе. Средняя температура наружного воздуха составляет –20оС, ожидаемая скорость ветра 5 м/с, видимость 18 метров.
1.36. Сделать заключение о возможности производства работ по укладке труб колёсным краном в городе ________в марте. Средняя температура наружного воздуха составляет 0оС, ожидаемая скорость ветра 22,5 м/с, видимость 25 метров.
1.37. Сделать заключение о возможности производства работ по планировке площадке в _________ в январе. Средняя температура наружного воздуха составляет –35оС, ожидаемая скорость ветра 4 м/с, видимость 30 метров.
1.38. Сделать заключение о возможности производства работ по бетонированию перекрытий 16-ти этажного дома методом «кран-бадья» в ___________в январе. Средняя температура наружного воздуха составляет –19оС, ожидаемая скорость ветра 43,2 км/ч, видимость 22 метра.
Расчет глубины промерзания грунтов
При производстве земляных работ в зимний период выбор метода производства работ, прежде всего, будет зависеть от расчетной глубины промерзания грунта [4], величина которой определяется по формуле
, (2)
где Н – расчетная глубина промерзания грунта, м;
t – средняя отрицательная температура наружного воздуха за рассматриваемый период (день, неделя, месяц, квартал и т.д.), оС;
n – число дней с установившейся отрицательная температура наружного воздуха;
k – коэффициент влияния величины снежного покрова (принимается по табл. 1);
λМ – коэффициент теплопроводности мерзлого грунта, Вт/м·оС,
; (3)
λГР – коэффициент теплопроводности грунта в естественном состоянии, Вт/м·оС (определяется по табл. 2);
ВГР – объемная влажность грунта, %.
Таблица 1. Коэффициент влияния толщины снежного покрова
Толщина снежного покрова, см | ||||||
Коэффициент влияния величины снежного покрова | 0,50 | 0,40 | 0,35 | 0,30 | 0,275 | 0,25 |
Одним из самых простых и распространенных методов разработки грунтов в зимних условиях является укрытие поверхностей грунта теплоизоляционными материалами с последующей разработкой грунтов обычными методами. Толщина утеплителя зависит от расчетной глубины промерзания грунта при данных климатических условиях и определяется по формуле
, (4)
где НУ – расчетная толщина утеплителя, м;
Н – расчетная глубина промерзания грунта, м;
λУ, λГР – коэффициент теплопроводности утеплителя и грунта, Вт/м оС (определяется по табл. 2);
СУ, СГР – удельная теплоемкость утеплителя и грунта, кДж/кг·оС (определяется по табл. 2);
ρУ, ρГР – плотность утеплителя и грунта, кг/м3 (определяется по табл. 2).
Таблица 2. Характеристики строительных и теплоизоляционных материалов
Материалы | Ед. изм. | Толщина слоя, мм | Объемная масса, кг/м3 | Коэффициент теплопроводности, Вт/(м·°С) | Удельная теплоемкость, кДж/кг·°С |
Бетон | – | – | 2,6 | 1,05 | |
Минераловатные плиты на синтетическом связующем (мягкие и полужесткие) | м3 | 20–40 | 0,05–0,07 | 0,76 | |
Минераловатные плиты на битумном связующем | м3 | 0,05–0,07 | 0,92 | ||
То же | м3 | 0,07–0,08 | 0,92 | ||
Маты минераловатные прошивные | м3 | 0,048 | 0,76 | ||
То же | м3 | 0,06 | 0,76 | ||
Пенопласт плиточный | м3 | 0,043 | 1,34 | ||
То же | м3 | 0,049 | 1,34 | ||
То же | м3 | 0,06 | 1,34 | ||
Войлок строительный | м3 | 9–11 | 0,06–0,10 | 0,35 | |
То же | м3 | 9–11 | 0,07–0,12 | 0,45 | |
Опилки | м3 | – | 0,16–0,24 | 2,2 | |
Шлак | – | – | 0,24–0,29 | – | |
Фанера | м3 | 8 и более | 0,17–0,20 | 2,72 | |
Рубероид, пергамин, толь | м2 | 1,0–2,0 | 0,17 | 1,47 | |
Древесина, доски | м3 | 20 и более | 0,17 | 2,72 | |
Сталь | кг | 3–5 | 0,48 | ||
Глина | – | – | 1,82 | 1,24 | |
Суглинок | – | – | 1,50 | 1,16 | |
Супесь | – | – | 1,10 | 1,13 | |
Песок | – | – | 0,60 | 1,09 |
Варианты задач
2.1. Рассчитать глубину промерзания глинистого грунта влажностью 25%, который промерзал в течение 15 дней со средней установившейся температурой наружного воздуха t = –12оС. В течение первых 5 дней толщина снежного покрова составила 10 см; в течение вторых 5 дней – 15 см; в течение последних 5 дней – 30 см.
2.2. Рассчитать глубину промерзания глинистого грунта влажностью 35%, который промерзал в течение 12 дней со средней установившейся температурой наружного воздуха t = –12оС. В течение всех 12 дней толщина снежного покрова составила в среднем 15 см.
2.3. Рассчитать глубину промерзания песчаного грунта влажностью 40%, который промерзал в течение 24-х дней со средней установившейся температурой наружного воздуха t = –28 оС. В течение всех дней толщина снежного покрова составила в среднем 40 см.
2.4. Рассчитать глубину промерзания глинистого грунта влажностью 30%, который промерзал в течение 24-х дней со средней установившейся температурой наружного воздуха t = –25 оС. В течение всех дней толщина снежного покрова составила в среднем 30 см. Определить толщину теплоизоляционного защитного слоя из опилок.
2.5. Рассчитать глубину промерзания песчаного грунта влажностью 22%, который промерзал в течение 24-х дней со средней установившейся температурой наружного воздуха t = –18 оС. За 24 дня толщина снежного покрова равномерно увеличилась с 10 см до 20 см.
2.6. Определить влажность песчаного грунта, который промерзал в течение 24-х дней со средней установившейся температурой наружного воздуха t = –18 оС, при установившейся толщина снежного покрова 15 см, если глубина его промерзания составила 0,297 м.
2.7. Определить при какой температуре наружного воздуха в течение 24-х дней промерзал песчаный грунт с влажностью 22%. Если известно, что при толщине снежного покрова 15 см глубина его промерзания составила 20,2 см.
2.8. Определить количество дней, в течение которых песчаный грунт с влажностью 22% промерз на 0,202 м при средней установившейся температуре наружного воздуха t = –18 оС и толщине снежного покрова 15 см.
2.9. Определить толщину снежного покрова песчаного грунта с влажностью 42%, который промерзал в течение 24-х дней со средней установившейся температурой наружного воздуха t = –18 оС, если глубина его промерзания составила 0,297 м.
2.10. Определить толщину теплоизоляционного слоя (состоящего из опилок) глинистого грунта влажностью 25%, который промерзал в течение 15 дней со средней установившейся отрицательной температурой t = –12 оС. В течение первых 5 дней толщина снежного покрова была 10 см; в течение вторых 5 дней – 15 см; в течение последних 5 дней – 30 см.
2.11. Определить толщину теплоизоляционного слоя (состоящего из опилок) песчаного грунта влажностью 30%, который промерзал в течение 61 дня со средней установившейся отрицательной температурой t = –10 оС. В течение всех дней толщина снежного покрова составила в среднем 10 см.
2.12. Определить толщину теплоизоляционного слоя (состоящего из фанеры) песчаного грунта влажностью 40%, который промерзал в течение 24-х дней со средней установившейся отрицательной температурой t = –28 оС. В течение всех дней толщина снежного покрова составила в среднем 40 см.
2.13. Определить толщину теплоизоляционного слоя (состоящего из пенопласта) песчаного грунта влажностью 30%, который промерзал в течение 61 дня со средней установившейся отрицательной температурой t = –10 оС. В течение всех дней толщина снежного покрова составила в среднем 10 см.
2.14. Определить толщину теплоизоляционного слоя (состоящего из пенопласта) песчаного грунта влажностью 40%, который промерзал в течение 24-х дней со средней установившейся отрицательной температурой t = –28 оС. В течение всех дней толщина снежного покрова составила в среднем 40 см.
2.15. Определить глубину промерзания глинистого грунта влажностью 25%, который промерзал в течение 20 дней со средней установившейся температурой наружного воздуха t = –21 оС. В течение всех дней толщина снежного покрова составила в среднем 15 см. Определить толщину теплоизоляционного защитного слоя при использовании в качестве утеплителя сухого шлака, покрытого рыхлым снегом толщиной 20 см.
2.16. Определить толщину теплоизоляционного слоя (состоящего из пенопласта) песчаного грунта влажностью 20%, который промерзал в течение 23-х дней со средней установившейся отрицательной температурой t = –22 оС. В течение всех дней толщина снежного покрова составила в среднем 10 см.
2.17. Определить глубину промерзания глинистого грунта влажностью 15%, который промерзал в течение 25 дней со средней установившейся температурой наружного воздуха t = –11 оС. В течение всех дней толщина снежного покрова составила в среднем 10 см. Определить толщину теплоизоляционного защитного слоя при использовании в качестве утеплителя сухого шлака, покрытого рыхлым снегом толщиной 10 см.
2.18. Определить толщину теплоизоляционного слоя (состоящего из опилок) глинистого грунта влажностью 22%, который промерзал в течение 25 дней со средней установившейся отрицательной температурой t = –22 оС. В течение первых 5 дней толщина снежного покрова была 5 см; в течение вторых 5 дней – 15 см; в течение последних 5 дней – 35 см.