Высказывание как форма мышления




Понятие как форма мышления

Если по содержанию высказывание: «Все комары – это насекомые », – является нормальным, а высказывание: «Все Чебурашки – это инопланетяне », – абсурдным, то для логики эти два высказывания равноценны, так как она занимается формами мышления, а форма у этих высказываний одна и та же: «Все A – это B».

Форма мышления – это способ выражения мыслей, или схема их построения.

Существует всего три формы мышления:

1. Понятие – это форма мышления, которая обозначает какой-либо объект или признак объекта. Примеры понятий: карандаш, растение, небесное тело, химический элемент, мужество, глупость, нерадивость.

2. Суждение – это форма мышления, которая состоит из понятий, связанных между собой, и что-либо утверждает или отрицает. Примеры суждений: «Все планеты являются небесными телами», «Некоторые школьники – это двоечники», «Все треугольники не являются квадратами ».

3. Умозаключение – это форма мышления, в которой из двух или нескольких исходных суждений (посылок) вытекает новое суждение (вывод).

В логике принято располагать посылки и вывод друг под другом и отделять посылки от вывода чертой.

Примеры умозаключений:

 

Все планеты движутся.

Юпитер – это планета.

Юпитер движется.

Помимо форм мышления логика также занимается законами мышления. Законы мышления – объективные принципы или правила мышления, соблюдение которых всегда приводит рассуждение (независимо от его содержания) к истинным выводам при условии истинности исходных суждений.

Основных законов мышления (или законов логики) четыре. Здесь они будут только перечислены: это законы: тождества; противоречия; исключённого третьего; достаточного основания.

Искусство определения

В окружающем нас мире существует бесконечное множество различных объектов и свойств, а в нашем сознании они отражаются в виде понятий.

Понятие – это форма мышления, которая обозначает какой-либо объект или его свойство. Например, один объект мы называем горой, другой – небесным телом, третий – растением; одно свойство или признак мы называем мужеством, другой – хитростью. Любое понятие выражается в слове или словосочетании, например: дом, осенний лист, первый президент Америки. Каждое понятие имеет содержание и объём.

Содержание понятия – это наиболее важный признак (или признаки) того объекта, который обозначен (выражен) этим понятием.

Объём понятия – это количество объектов, охватываемых этим понятием, входящих в него. Например, объём понятия «человек » гораздо больше, чем объём понятия «мужчина », потому что мужчин меньше, чем людей вообще. А объём понятия «русский мужчина » гораздо меньше, чем объём понятия «мужчина », потому что русских мужчин на свете намного меньше, чем вообще всех мужчин. И, наконец, объём понятия «первый президент России » равен единице, потому что включает в себя только одного человека. какое понятие – «человек » или «мужчина » – больше по объёму? Понятие «человек » больше, потому что оно охватывает гораздо больше объектов, чем понятие «мужчина ». Таким образом, между объёмом и содержанием понятия существует обратное отношение: чем больше содержание понятия, тем меньше его объём, и наоборот. По объёму они бывают единичными -солнце, город Москва, писатель Л.Толстой. общими (в объём понятия входит много объектов, например: небесное тело, город, президент, писатель) и нулевыми (в объём понятия не входит ни одного объекта, например: Баба-яга, Кощей Бессмертный, Дед Мороз, вечный двигатель, марсианский житель, т. е. понятие существует, а объект, который оно обозначает, не существует). По объёму понятия также бывают собирательными (понятие обозначает объект, который состоит, собирается из какого-то ограниченного набора элементов - 10 класс «А», рота солдат, музыкальный коллектив, волчья стая, созвездие) и несобирательными (понятие обозначает объект, который не состоит, не собирается из какого-то ограниченного набора элементов, не делится, не распадается на какие-то составные части, являясь чем-то единым, целым, например: человек, растение, звезда, океан, карандаш). По содержанию понятия бывают конкретными (понятие обозначает какой-либо объект, например: стол, гора, дерево, планета) и абстрактными (понятие обозначает не объект, а признак, свойство, например: мужество, глупость, неряшливость, темнота). По содержанию понятия также бывают положительными (понятие обозначает наличие чего-либо, например: животное, школа, небоскрёб, комета) и отрицательными (понятие обозначает отсутствие чего-либо, например: не животное, не школа, неправда, бестактность). Легко заметить, что понятие является отрицательным, когда слово, которым оно выражено, употребляется с частицей «не» или с приставкой «без-», однако если эта частица «не-» входит в состав слова, которое без неё не употребляется, например: неряха, неряшливость, ненастье, нерадивость, невежество, то понятие, выраженное таким словом, является положительным. Понятие является определённым, когда оно имеет ясное содержание и резкий объём. Как мы уже знаем, содержание понятия – это наиболее важные признаки того объекта, Например, понятие «мастер спорта » является определённым. Оно имеет ясное содержание, т. к. можно точно указать его наиболее важный отличительный признак – официально обладать спортивным разрядом мастера спорта. Также это понятие имеет резкий объём – относительно любого человека можно точно сказать, является он мастером спорта или нет, Понятие является неопределённым, когда оно имеет неясное содержание и нерезкий объём. Если понятие характеризуется неясным содержанием, Например, понятие «хороший спортсмен » является неопределённым. Оно имеет неясное содержание, т. к. невозможно с точностью указать существенные признаки хорошего спортсмена:

Высказывание как форма мышления

Суждение (высказывание) – это форма мышления, в которой что-либо утверждается или отрицается. Например: «Все сосны являются деревьями», «Некоторые люди – это спортсмены», «Ни один кит – не рыба», «Некоторые животные не являются хищниками».

Рассмотрим несколько важных свойств суждения, которые в то же время отличают его от понятия:

1. Любое суждение состоит из понятий, связанных между собой.

Например, если связать понятия «карась » и «рыба », то могут получиться суждения: «Все караси являются рыбами», «Некоторые рыбы являются карасями».

2. Любое суждение выражается в форме предложения (вспомним, понятие выражается словом или словосочетанием). Однако не всякое предложение может выражать суждение. Как известно, предложения бывают повествовательными, вопросительными и восклицательными. В вопросительных и восклицательных предложениях ничего не утверждается и не отрицается, поэтому они не могут выражать собой суждение. Повествовательное предложение, наоборот, всегда что-либо утверждает или отрицает, в силу чего суждение выражается в форме повествовательного предложения. Тем не менее есть такие вопросительные и восклицательные предложения, которые только по форме являются вопросами и восклицаниями, а по смыслу что-то утверждают или отрицают. Они называются риторическими. Например, известное высказывание: «И какой же русский не любит быстрой езды? » – представляет собой риторическое вопросительное предложение (риторический вопрос), т. к. в нём в форме вопроса утверждается, что всякий русский любит быструю езду.

В подобном вопросе заключено суждение. То же самое можно сказать о риторических восклицаниях. Например, в высказывании: «Попробуй найти чёрную кошку в тёмной комнате, если её там нет! » – в форме восклицательного предложения утверждается мысль о невозможности предложенного действия, в силу чего данное восклицание выражает собой суждение. Понятно, что не риторический, а настоящий вопрос, например: «Как тебя зовут? » – не выражает суждение, точно так же, как не выражает его настоящее, а не риторическое восклицание, например: «Прощай, свободная стихия!».

3. Любое суждение является истинным или ложным. Если суждение соответствует действительности, оно истинное, а если не соответствует – ложное. Например, суждение: «Все розы – это цветы », – является истинным, а суждение: «Все мухи – это птицы », – ложным. Надо отметить, что понятия, в отличие от суждений, не могут быть истинными или ложными. Невозможно, например, утверждать, что понятие «школа » – истинное, а понятие «институт » – ложное, понятие «звезда » – истинное, а понятие «планета » – ложное и т. п. Но разве понятия «Змей Горыныч », «Кощей Бессмертный », «вечный двигатель » не ложные? Нет, эти понятия являются нулевыми (пустыми), но не истинными и не ложными. Вспомним, понятие – это форма мышления, которая обозначает какой-либо объект, – и именно поэтому не может быть истинным или ложным. Истинность или ложность – это всегда характеристика какого-то высказывания, утверждения или отрицания, поэтому она применима только к суждениям, но не к понятиям. Поскольку любое суждение принимает одно из двух значений – истины или лжи – то аристотелевская логика также часто называется двузначной логикой.

4. Суждения бывают простыми и сложными. Сложные суждения состоят из простых, соединённых каким-либо союзом.

Как видим, суждение – это более сложная форма мышления по сравнению с понятием. Неудивительно поэтому, что суждение имеет определённую структуру, в которой можно выделить четыре части:

1. Субъект (обозначается латинской буквой S) – это то, о чём идёт речь в суждении. Например, в суждении: «Все учебники являются книгами », – речь идёт об учебниках, поэтому субъектом данного суждения выступает понятие «учебники ».

2. Предикат (обозначается латинской буквой Р) – это то, что говорится о субъекте. Например, в том же суждении: «Все учебники являются книгами », – о субъекте (об учебниках) говорится, что они – книги, поэтому предикатом данного суждения выступает понятие «книги ».

3. Связка – это то, что соединяет субъект и предикат. В роли связки могут быть слова «есть», «является», «это» и т. п.

4. Квантор – это указатель на объём субъекта. В роли квантора могут быть слова «все», «некоторые», «ни один» и т. п.

Рассмотрим суждение: «Некоторые люди являются спортсменами ». В нём субъектом выступает понятие «люди », предикатом – понятие «спортсмены », роль связки играет слово «являются », а слово «некоторые » представляет собой квантор. Если в каком-то суждении отсутствует связка или квантор, то они всё равно подразумеваются. Например, в суждении: «Тигры – это хищники », – квантор отсутствует, но он подразумевается – это слово «все». С помощью условных обозначений субъекта и предиката можно отбросить содержание суждения и оставить только его логическую форму.

Например, если у суждения: «Все прямоугольники – это геометрические фигуры », – отбросить содержание и оставить форму, то получится: «Все S есть Р ». Логическая форма суждения: «Некоторые животные не являются млекопитающими », – «Некоторые S не есть Р ».

  1. Язык логики высказываний и логики предикатов

Суждения бывают простыми и сложными. Сложные суждения состоят из простых, соединённых каким-либо союзом.

Как видим, суждение – это более сложная форма мышления по сравнению с понятием. Неудивительно поэтому, что суждение имеет определённую структуру, в которой можно выделить четыре части:

1. Субъект (обозначается латинской буквой S) – это то, о чём идёт речь в суждении. Например, в суждении: «Все учебники являются книгами », – речь идёт об учебниках, поэтому субъектом данного суждения выступает понятие «учебники ».

2. Предикат (обозначается латинской буквой Р) – это то, что говорится о субъекте. Например, в том же суждении: «Все учебники являются книгами », – о субъекте (об учебниках) говорится, что они – книги, поэтому предикатом данного суждения выступает понятие «книги ».

3. Связка – это то, что соединяет субъект и предикат. В роли связки могут быть слова «есть», «является», «это» и т. п.

4. Квантор – это указатель на объём субъекта. В роли квантора могут быть слова «все», «некоторые», «ни один» и т. п.

Рассмотрим суждение: «Некоторые люди являются спортсменами ». В нём субъектом выступает понятие «люди », предикатом – понятие «спортсмены », роль связки играет слово «являются », а слово «некоторые » представляет собой квантор. Если в каком-то суждении отсутствует связка или квантор, то они всё равно подразумеваются. Например, в суждении: «Тигры – это хищники », – квантор отсутствует, но он подразумевается – это слово «все». С помощью условных обозначений субъекта и предиката можно отбросить содержание суждения и оставить только его логическую форму.

Например, если у суждения: «Все прямоугольники – это геометрические фигуры », – отбросить содержание и оставить форму, то получится: «Все S есть Р ». Логическая форма суждения: «Некоторые животные не являются млекопитающими », – «Некоторые S не есть Р ».

Субъект и предикат любого суждения всегда представляют собой какие-либо понятия, которые, как мы уже знаем, могут находиться в различных отношениях между собой. Между субъектом и предикатом суждения могут быть следующие отношения.

1. Равнозначность. В суждении: «Все квадраты – это равносторонние прямоугольники », – субъект «квадраты » и предикат «равносторонние прямоугольники » находятся в отношении равнозначности, потому что представляют собой равнозначные понятия (квадрат – это обязательно равносторонний прямоугольник, S = P а равносторонний прямоугольник – это обязательно квадрат) (рис. 18).

2. Пересечение. В суждении:

«Некоторые писатели – это американцы », – субъект «писатели » и предикат «американцы » находятся в отношении пересечения, т. к. являются пересекающимися понятиями (писатель может быть американцем и может им не быть, и американец может быть писателем, но также может им не быть) (рис. 19).

 

3. Подчинение. В суждении:

«Все тигры – это хищники », – субъект «тигры » и предикат «хищники » находятся в отношении подчинения, потому что представляют собой видовое и родовое понятия (тигр – это обязательно хищник, но хищник не обязательно тигр). Так же в суждении: «Некоторые хищники являются тиграми », – субъект «хищники » и предикат «тигры » находятся в отношении подчинения, будучи родовым и видовым понятиями. Итак, в случае подчинения между субъектом и предикатом суждения возможны два варианта отношений: объём субъекта полностью включается в объём предиката (рис. 20, a), или наоборот (рис. 20, б).

 

4. Несовместимость. В суждении: «Все планеты не являются звёздами », – субъект «планеты » и предикат «звёзды » находятся в отношении несовместимости, т. к. являются несовместимыми (соподчинёнными) понятиями (ни одна планета не может быть звездой, и ни одна звезда не может быть планетой) (рис. 21).

 

Чтобы установить, в каком отношении находятся субъект и предикат того или иного суждения, надо сначала установить, какое понятие данного суждения является субъектом, а какое – предикатом. Например, надо определить отношение между субъектом и предикатом в суждении: «Некоторые военнослужащие являются россиянами ». Сначала находим субъект суждения, – это понятие «военнослужащие »; затем устанавливаем его предикат, – это понятие «россияне ». Понятия «военнослужащие » и «россияне » находятся в отношении пересечения (военнослужащий может быть россиянином и может им не быть, и россиянин может как быть, так и не быть военнослужащим). Следовательно, в указанном суждении субъект и предикат пересекаются. Точно так же в суждении: «Все планеты – это небесные тела », – субъект и предикат находятся в отношении подчинения, а в суждении: «Ни один кит не является рыбой », – субъект и предикат несовместимы.

Как правило, все суждения подразделяют на три вида:

1. Атрибутивные суждения (от лат. attributum – атрибут) – это суждения, в которых предикат представляет собой какой-либо существенный, неотъемлемый признак субъекта. Например, суждение: «Все воробьи – это птицы », – атрибутивное, потому что его предикат является неотъемлемым признаком субъекта: быть птицей – это главный признак воробья, его атрибут, без которого он не будет самим собой (если некий объект не птица, то он обязательно и не воробей). Надо отметить, что в атрибутивном суждении не обязательно предикат является атрибутом субъекта, может быть и наоборот – субъект представляет собой атрибут предиката. Например, в суждении: «Некоторые птицы – это воробьи » (как видим, по сравнению с вышеприведённым примером, субъект и предикат поменялись местами), субъект является неотъемлемым признаком (атрибутом) предиката. Однако эти суждения всегда можно формально изменить таким образом, что предикат станет атрибутом субъекта. Поэтому атрибутивными обычно называются те суждения, в которых предикат является атрибутом субъекта.

2. Экзистенциальные суждения (от лат. existentia – существование) – это суждения, в которых предикат указывает на существование или несуществование субъекта. Например, суждение: «Вечных двигателей не бывает », – является экзистенциальным, т. к. его предикат «не бывает » свидетельствует о несуществовании субъекта (вернее –предмета, который обозначен субъектом).

3. Релятивные суждения (от лат. relativus – относительный) – это суждения, в которых предикат выражает собой какое-то отношение к субъекту. Например, суждение: «Москва основана раньше Санкт-Петербурга »,– является релятивным, потому что его предикат «основана раньше Санкт-Петербурга » указывает на временное (возрастное) отношение одного города и соответствующего понятия к другому городу и соответствующему понятию, представляющему собой субъект суждения.

  1. Умозаключение как форма мышления

Умозаключение – это форма мышления, в которой из двух или нескольких суждений, называемых посылками, вытекает новое суждение, называемое заключением (выводом):

Все живые организмы питаются влагой. Все растения – это живые организмы. Все растения питаются влагой.

В приведённом примере первые два суждения являются посылками, а третье – выводом. Посылки должны быть истинными суждениями и должны быть связаны между собой. Если хотя бы одна из посылок ложна, то и вывод ложен:

Все птицы – это млекопитающие животные.

Все воробьи – это птицы. Все воробьи – это млекопитающие животные.

Как видим, в приведённом примере ложность первой посылки приводит к ложному выводу, несмотря на то, что вторая посылка является истинной. Если посылки между собой не связаны, то вывод из них сделать невозможно. Например, из следующих двух посылок никакого вывода не следует:

Все планеты – это небесные тела. Все сосны являются деревьями.

? Обратим внимание на то, что умозаключения состоят из суждений, а суждения – из понятий, т. е. одна форма мышления входит в другую в качестве составной части.

Все умозаключения делятся на непосредственные и опосредованные. В непосредственных умозаключениях вывод делается из одной посылки. Приведены примеры таких умозаключений:

Все цветы являются растениями. Некоторые растения являются цветами. Верно, что все цветы являются растениями. Неверно, что некоторые цветы не являются растениями.

Нетрудно догадаться, что непосредственные умозаключения представляют собой уже известные нам операции преобразования простых суждений и выводы об истинности простых суждений по логическому квадрату. Первый приведённый пример непосредственного умозаключения является преобразованием простого суждения путём обращения, а во втором примере по логическому квадрату из истинности суждения вида A делается вывод о ложности суждения вида O.

В опосредованных умозаключениях вывод делается из нескольких посылок. Например:

Все рыбы – это живые существа. Все караси – это рыбы. Все караси – это живые существа.

Опосредованные умозаключения делятся на три вида:

1. Дедуктивные умозаключения (дедукция) (от лат. deductio – выведение) – это умозаключения, в которых из общего правила делается вывод для частного случая (из общего правила выводится частный случай). Например:

Все звёзды излучают энергию. Солнце – это звезда. Солнце излучает энергию.

Как видим, первая посылка представляет собой общее правило, из которого (при помощи второй посылки) вытекает частный случай в виде вывода: если все звёзды излучают энергию, значит, Солнце тоже её излучает, потому что оно является звездой. В дедукции рассуждение идёт от общего к частному, от большего к меньшему, знание сужается, в силу чего дедуктивные выводы достоверны, т. е. точны, обязательны, необходимы. Посмотрим ещё раз на приведённый пример. Мог бы из двух данных посылок вытекать иной вывод, кроме того, который из них вытекает? Не мог!

Вытекающий вывод – единственно возможный в этом случае. Изобразим отношения между понятиями, из которых состояло наше умозаключение, кругами Эйлера.

Объёмы трёх понятий: «звёзды » (З); «тела, излучающие энергию » (Т); «Солнце » (С), схематично расположатся следующим образом (рис. 33):

 

Если объём понятия «звёзды » включается в объём понятия «тела, излучающие энергию », а объём понятия «Солнце » включается в объём понятия «звёзды », то объём понятия «Солнце » автоматически включается в объём понятия «тела, излучающие энергию », в силу чего дедуктивный вывод и является достоверным.

Несомненное достоинство дедукции, конечно же, заключается в достоверности её выводов. Вспомним, известный литературный герой Шерлок Холмс пользовался дедуктивным методом при раскрытии преступлений. Это значит, что он строил свои рассуждения таким образом, чтобы из общего выводить частное. В одном произведении, объясняя доктору Ватсону сущность своего дедуктивного метода, он приводит такой пример. Около убитого полковника Морена сыщики Скотланд-Ярда обнаружили выкуренную сигару и решили, что полковник выкурил её перед смертью. Однако, он (Шерлок Холмс) неопровержимо доказывает, что полковник Морен не мог выкурить эту сигару, потому что он носил большие, пышные усы, а сигара выкурена до конца, т. е., если бы её курил полковник Морен, то он непременно подпалил бы свои усы. Следовательно, сигару выкурил другой человек. В этом рассуждении вывод выглядит убедительно именно потому, что он дедуктивный: из общего правила:

«Любой человек с большими, пышными усами не может выкурить сигару до конца », – выводится частный случай: «Полковник Морен не мог выкурить сигару до конца, потому что носил такие усы ».

Приведём рассмотренное рассуждение к принятой в логике стандартной форме записи умозаключений в виде посылок и вывода:

Любой человек с большими, пышными усами не может выкурить сигару до конца. Полковник Морен носил большие, пышные усы. Полковник Морен не мог выкурить сигару до конца.

2. Индуктивные умозаключения (индукция) (от лат. inductio – наведение) – это умозаключения, в которых из нескольких частных случаев выводится общее правило (несколько частных случаев как бы наводят на общее правило). Например:

Юпитер движется. Марс движется. Венера движется. Юпитер, Марс, Венера – это планеты. Все планеты движутся.

Первые три посылки представляют собой частные случаи, четвёртая посылка подводит их под один класс объектов, объединяет их, а в выводе говорится обо всех объектах этого класса, т. е. формулируется некое общее правило (вытекающее из трёх частных случаев). Легко увидеть, что индуктивные умозаключения строятся по принципу, противоположному построению дедуктивным умозаключениям. В индукции рассуждение идёт от частного к общему, от меньшего к большему, знание расширяется, в силу чего индуктивные выводы, в отличие от дедуктивных, не достоверны, а вероятностны. В рассмотренном выше примере индукции признак, обнаруженный у некоторых объектов какой-то группы, перенесён на все объекты этой группы, сделано обобщение, которое почти всегда чревато ошибкой: вполне возможно наличие в группе каких-то исключений, и даже если множество объектов из некой группы характеризуется каким-то признаком, то это не означает с достоверностью, что таким признаком характеризуются все объекты данной группы. Вероятностный характер выводов является, конечно же, недостатком индукции. Однако её несомненное достоинство и выгодное отличие от дедукции, которая представляет собой сужающееся знание, заключается в том, что индукция – это расширяющееся знание, способное приводить к новому, в то время как дедукция – это разбор старого и уже известного.

3. Умозаключения по аналогии (аналогия) (от греч. analogia – соответствие) – это умозаключения, в которых на основе сходства предметов (объектов) в одних признаках делается вывод об их сходстве и в других признаках. Например:

Планета Земля расположена в Солнечной системе, на ней есть атмосфера, вода и жизнь. Планета Марс расположена в Солнечной системе, на ней есть атмосфера и вода. Вероятно, на Марсе есть жизнь.

Как видим, сравниваются (сопоставляются) два объекта (планета Земля и планета Марс), которые сходны между собой в некоторых существенных, важных признаках (находиться в Солнечной системе, иметь атмосферу и воду). На основе данного сходства делается вывод о том, что, возможно, эти объекты сходны между собой и в других признаках: если на Земле есть жизнь, а Марс во многом похож на Землю, то не исключено наличие жизни и на Марсе. Выводы аналогии, как и выводы индукции, вероятностны.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: