E) правильный ответ отсутствует.




Надежность технологических машин


1.1 Состояние изделия, при котором оно способно выполнять заданные функции (с параметрами, установленными в технической документации) это:

A) долговечность;

B) работоспособность;

C) сохраняемость;

D) безотказность;

E) исправность.

1.2 Что характеризует данная формулировка: «Свойство изделий, заключающееся в приспособленности его к хранению и транспортировке»?

A) надежность;

B) безотказность

C) долговечность;

D) ремонтопригодность;

E) сохраняемость.

2.1 Гамма процентный ресурс относится к показателям:

A) безотказности;

B) ремонтопригодности;

C) долговечности;

D) сохраняемости;

E) отдельный показатель.

Событие, заключающееся в потере работоспособности, будет называться

A) предельным состоянием;

B) дефектом;

C) отказом;

D) износом;

E) правильный ответ отсутствует.

4.1 Отказ это:

A) каждое отдельно несоответствие детали, узла установленным требованием;

B) состояние объекта, при котором он не соответствует хотя бы одному из требований, установленных технической документации;

C) состояние объекта, при котором его дальнейшая эксплуатация должна быть прекращена;

D) событие, заключающееся в потере работоспособности;

E) событие, при котором объект работает с перегрузками.

5.1 Интенсивность отказов относится к показателям:

A) безотказности;

B) ремонтопригодности;

C) долговечности;

D) сохраняемости;

E) отдельный показатель.

6.1 Что характеризует данная формулировка: «Свойство изделий сохранять работоспособность в течении некоторой наработки без вынужденных перерывов»:

A) надежность;

B) безотказность;

C) долговечность;

D) ремонтопригодность;

E) сохраняемость.

6.2 Коэффициент готовности относится к показателям:

A) безотказности;

B) ремонтопригодности;

C) долговечности;

D) сохраняемости;

E) комплексным.

6.3 Какими основными показателями характеризуется надежность:

A) работоспособность, безотказность, долговечность, сохраняемость;

B) долговечность, безотказность, износостойкость, сохраняемость;

C) безотказность, долговечность, ремонтопригодность, сохраняемость;

D) износостойкость, ремонтопригодность, долговечность, работоспособность;

E) безотказность, износостойкость, долговечность, ремонтопригодность.

6.4 Что характеризует данная формулировка: «Свойства изделий в приспособленности его к предупреждению, обнаружению к устранению отказов»:

A) безотказность;

B) долговечность;

C) работоспособность;

D) сохраняемость;

E) ремонтопригодность.

7.1 Наработка от начала эксплуатации объекта до наступления его предельного состояния это:

A) межремонтный ресурс;

B) полный ресурс;

C) эксплуатационный ресурс;

D) срок эксплуатации;

E) правильный ответ отсутствует.

8.1 Предельное состояние деталей, образующих сопряжения, определяют по:

A) предельной величине износа каждой детали в отдельности;

B) величине предельного зазора;

C) предельной величине износа одной из деталей входящей в сопряжение;

D) полному ресурсу;

E) правильный ответ отсутствует.

9.1 По причинам возникновения отказы делятся на:

A) конструкционные, технологические, эксплуатационные;

B) коррозионные, конструкционные, технологические;

C) технологические, экономические, эксплуатационные;

D) геометрические, физико-механические, химические;

E) правильный ответ отсутствует.

10.1 Изнашивание при фреттинг-коррозии это:

A) изнашивание при наличии на поверхностях трения защитных пленок;

B) изнашивание соприкасающихся тел при малых колебательных перемещениях;

C) изнашивание в результате схватывания и глубинного вырывания материала;

D) изнашивание поверхности в результате воздействия потока жидкости или газа;

E) изнашивание в результате повторного деформирования микрообъемов материала.

11.1 К коррозионно-механическому виду изнашивания относятся:

A) абразивное;

B) усталостное;

C) эрозионное;

D) кавитационное;

E) окислительное.

11.2 К коррозионно-механическому виду изнашивания относятся:

A) абразивное;

B) усталостное;

C) эрозионное кавитационное;

D) фреттинг-коррозия;

E) коррозия.

12.1 Отказы, по причине возникновения бывают:

A) постепенные и внезапные;

B) естественные и преднамеренные;

C) первой, второй и третьей группы сложности;

D) исследовательские и расчетно-конструкторские;

E) эксплуатационные и ресурсные.

12.2 Отказы, в зависимости от причин их вызывающих, бывают:

A) естественные и преднамеренные;

B) постепенные и внезапные;

C) первой, второй и третьей группы сложности;

D) производственно-технологические и расчетно-конструкторские;

E) эксплуатационные и ресурсные.

13.1 Окислительное изнашивание это:

A) изнашивание при наличии на поверхностях трения защитных пленок;

B) изнашивание соприкасающихся тел при малых колебательных перемещениях;

C) изнашивание в результате схватывания и глубинного вырывания материала;

D) изнашивание поверхности в результате воздействия потока жидкости или газа;

E) изнашивание в результате повторного деформирования микрообъемов материала.

14.1 Какой метод непригоден для измерения величины износа конкретной изношенной детали:

A) интегральный;

B) метод микрометража;

C) метод искусственных баз;

D) метод измерения кругломером;

E) метод отпечатков.

14.2 Существуют следующие методы измерения величины износа:

A) диагностический, параметрический;

B) технический, экономический, технологический;

C) технологический, диагностический;

D) интегральный, микрометража;

E) дифференциальный, технологический.

15.1 Каждое отдельное несоответствие детали, узла установленным требованиям называется:

A) предельным состоянием;

B) дефектом;

C) отказом;

D) износом;

E) качеством.

16.1 Предельный износ устанавливают по следующим критериям:

A) технологический, качества, надежности;

B) технологический, экономический, надежности;

C) технический и технологический;

D) экономический и надежности;

E) технический, качества, экономический.

17.1 Эрозионное изнашивание это:

A) изнашивание при наличии на поверхностях трения защитных пленок;

B) изнашивание соприкасающихся тел при малых колебательных перемещениях;

C) изнашивание в результате схватывания и глубинного вырывания материала;

D) изнашивание в результате воздействия потока жидкости или газа;

E) изнашивание в результате повторного деформирования микрообъемов материала.

18.1 Изнашивание поверхности при движении твердого тела и жидкости в условиях кавитации это:

A) абразивное;

B) усталостное;

C) эрозионное;

D) кавитационное;

E) фреттинг-коррозия.

19.1 Отказы, по природе происхождения бывают:

A) естественные и преднамеренные;

B) эксплуатационные и ресурсные;

C) первой, второй и третьей группы сложности;

D) постепенные и внезапные;

E) исследовательские и расчетно-графические.

20.1 Усталостное изнашивание это:

A) изнашивание при наличии на поверхностях трения защитных пленок;

B) изнашивание соприкасающихся тел при малых колебательных перемещениях;

C) изнашивание в результате схватывания и глубинного вырывания материала;

D) изнашивание поверхности в результате воздействия потока жидкости или газа;

E) изнашивание в результате повторного деформирования микрообъемов материала.

21.1 При каком виде нагружения детали «эффект Ребиндера» оказывает влияние на ее прочность:

A) ударная нагрузка;

B) равномерное кручение;

C) статистические изгибающие нагрузки;

D) растягивающие нагрузки;

E) циклические усталостные нагрузки.

22.1 Какой вид изнашивания наиболее распространен у нагруженных подшипников качения:

A) при заедании;

B) усталостное;

C) эрозионное;

D) окислительное;

E) газообразивное.

23.1 Какой вид изнашивания наиболее распространен у нагруженных подшипников качения:

A) при заедании;

B) усталостное;

C) эррозионное;

D) окислительное;

E) газообразивное.

24.1 Изнашивание при заедании это:

A) изнашивание при наличии на поверхностях трения защитных пленок;

B) изнашивание соприкасающихся тел при малых колебательных перемещениях;

C) изнашивание в результате схватывания и глубинного вырывания материала;

D) изнашивание поверхности в результате воздействия потока жидкости или газа;

E) изнашивание в результате повторного деформирования микрообъемов.

25.1 Какой вид изнашивания относится к группе механического:

A) кавитационное;

B) окислительное;

C) фреттинг-коррозия;

D) при заедании;

E) коррозионное.

26.1 Формула х=w1*x1+w2*x2+…+wn*xn=åwixi служит для определения:

A) среднего арифметического;

B) среднего взвешенного;

C) медианы распределения;

D) моды распределения;

E) коэффициента вариации распределения.

27.1 Значение Хi, которое соответствует максимальному значению плотности вероятностей (наибольшее значение ординаты кривой) – это:

A) размах;

B) медиана;

C) мода;

D) дисперсия;

E) среднеквадратичное отклонение.

28.1 Мера рассеивания отдельных значений случайной величины относительно среднего значения – это:

A) размах;

B) медиана;

C) мода;

D) дисперсия;

E) среднеквадратичное отклонение.

29.1 Xi max-Xi min = … это:

A) размах;

B) медиана;

C) мода;

D) дисперсия;

E) среднеквадратичное отклонение.

29.2 Значение Хi, при котором вероятность больших или меньших его значений одинакова – это:

A) размах;

B) медиана;

C) мода;

D) дисперсия;

E) среднеквадратичное отклонение.

30.1 Число отказов, возникших в течение какого-либо интервала времени – это:

A) случайная дискретная величина;

B) случайная непрерывно-дискретная величина;

C) случайная непрерывная величина;

D) случайная вариационная величина;

E) случайная статистическая величина.

31.1 Величина износа деталей в партии – это:

A) случайная дискретная величина;

B) случайная непрерывно-дискретная величина;

C) случайная непрерывная величина;

D) случайная вариационная величина;

E) случайная статистическая величина.

32.1 Совокупность значений случайных величин расположенных в возрастающем порядке, с указанием их вероятностей или частостей – это:

A) мода;

B) вариационный ряд распределения;

C) распределение случайных величин;

D) коэффициент вариации;

E) медиана.

33.1 К мерам рассеяния случайной величины относятся:

A) размах, мода, медиана;

B) дифференциальная, интегральная функции;

C) размах, дисперсия, средняя арифметическая;

D) размах, дисперсия, среднее квадратическое отклонение;

E) средняя взвешенная.

34.1 Вероятность безотказной работы машины Р(t) при совместном действии износных и внезапных отказов может быть определена по теореме:

A) Р(t) = Ри(t)*Рв(t)

B) Р(t) = Ри(t)/Рв(t)

C) Р(t) = Ри(t)-Рв(t)

D) Р(t) = Ри(t)+Рв(t)

E) Р(t) = Ри(t)*(-Рв(t))

35.1 Какому закону распределения чаще всего подчиняются внезапные отказы:

A) Ребиндера;

B) нормальному закону распределения;

C) логарифмическому;

D) экспоненциальному;

E) Релея.

36.1 Вероятность любого случайного события – есть величина лежащая на участке:

A) от –1 до +1

B) от 0 до +1

C) от –1 до 0

D) от 0 до +100

E) от 0 до +10

37.1 Среднее значение случайной величины, при небольшом количестве исходной информации, не объединённой в статистический ряд, определяется как

A) среднее взвешенное;

B) среднее квадратическое отклонение;

C) мода;

D) среднее арифметическое;

E) медиана.

38.1 При наличии статистического ряда среднее значение случайной величины находится как

A) среднее взвешенное;

B) среднее квадратическое отклонение;

C) мода;

D) среднее арифметическое;

E) медиана.

39.1 Формула х=w1*x1+w2*x2+…+wn*xn=åwixi служит для определения:

A) среднего арифметического;

B) среднего взвешенного;

C) медианы распределения;

D) моды распределения;

E) коэффициента вариации распределения.

40.1 Значение Хi, которое соответствует максимальному значению плотности вероятностей (наибольшее значение ординаты кривой) – это:

A) размах;

B) медиана;

C) мода;

D) дисперсия;

E) среднеквадратичное отклонение.

41.1 Значение Хi, при котором вероятность больших или меньших его значений одинакова – это:

A) размах;

B) медиана;

C) мода;

D) дисперсия;

E) среднеквадратичное отклонение.

42.1 Величина износа деталей в партии – это:

A) случайная дискретная величина;

B) случайная непрерывно-дискретная величина;

C) случайная непрерывная величина;

D) случайная вариационная величина;

E) случайная статистическая величина.

43.1 Совокупность значений случайных величин расположенных в возрастающем порядке, с указанием их вероятностей или частостей – это:

A) мода;

B) вариационный ряд распределения;

C) распределение случайных величин;

D) коэффициент вариации;

E) медиана.

44.1 Виды испытаний с/х техники бывают:

A) полные и не полные;

B) нагруженные и ненагруженные;

C) сложные и простые;

D) определительные и контрольные;

E) постоянные и сезонные.

45.1 В каком из приведенных планов испытаний отказавшие изделия не заменяются, а испытания ведутся до определенной наработки:

A) NVr

B) NVN

C) NRT

D) NRr

E) NVT

45.2 В каком из приведенных планов испытаний отказавшие изделия не заменяются, а испытания ведутся до появления определенного количества отказов:

A) NVr

B) NVN

C) NRT

D) NRr

E) NVT

45.3 В каком из приведенных планов испытаний отказавшие изделия не заменяются, а испытания ведутся до отказа всех изделий:

A) NVr

B) NVN

C) NRT

D) NRr

E) NVT

45.4 В каком из приведенных планов испытаний отказавшие изделия заменяются новыми или ремонтируются, а испытания ведутся до появления определенного количества отказов:

A) NVr

B) NVN

C) NRT

D) NRr

E) NVT

45.5 В каком из приведенных планов отказавшие изделия заменяются новыми или ремонтируются, а испытания ведутся до получения определенной наработки:

A) NVr

B) NVN

C) NRT

D) NRr

E) NVT

46.1 При формировании испытаний методом усиления режимов работы необходимо, чтобы выполнялось условие, которое записывается так: Р (tу) = Р (tэ). Как называется это условие:

A) условие равенства коэффициентов вариации;

B) условие физического подобия;

C) условия равенства нагрузок;

D) условие равенства режима работы;

E) условие математического подобия.

47.1 При проведении стендовых испытаний какой используется метод определения величины износа деталей?

A) интегральный;

B) микрометража;

C) отпечатков;

D) лунки;

E) снимков.

48.1 Какие методы испытаний машин на надежность дают наиболее достоверные результаты:

A) стендовые испытания;

B) эксплуатационные;

C) полигонные;

D) ускоренные;

E) форсированные.

49.1 При испытании свойств материалов, определяющих надёжность изделий, в качестве объёктов могут быть:

A) образцы;

B) сопряжения и кинематические пары;

C) узлы машин;

D) машина в целом;

E) система машин.

50.1 При изучении взаимодействия отдельных механизмов и элементов конструкции на показатели работоспособности, в качестве объёктов могут быть:

A) образцы;

B) сопряжения и кинематические пары;

C) узлы машин;

D) машина в целом;

E) система машин.

51.1 При изучении влияния различных факторов на срок службы сопряжений, в качестве объёктов могут быть:

A) образцы;

B) кинематические пары;

C) узлы машин;

D) машина в целом;

E) система машин.

52.1 Виды испытаний с/х техники бывают:

A) полные и не полные;

B) нагруженные и ненагруженные;

C) сложные и простые;

D) определительные и контрольные;

E) постоянные и сезонные.

53.1 В каком из приведенных планов испытаний отказавшие изделия не заменяются, а испытания ведутся до определенной наработки:

A) NVr

B) NVN

C) NRT

D) NRr

E) NVT

54.1 В качестве объектов испытаний могут быть:

A) образцы;

B) сопряжения;

C) узлы машин;

D) машины в сборе;

E) все вышеперечисленные.

55.1 План NUN используют для сбора:

A) полной информации;

B) усеченной информации;

C) сокращенной информации;

D) многократно усеченной;

E) неполной.

56.1 В плане испытаний NUN буква N означает:

A) число отказов;

B) число предельных состояний;

C) число замен;

D) число изделий, поставленных под наблюдение;

E) число запасных частей.

56.2 В плане испытаний NUr, буква r означает:

A) число отказов;

B) число замен;

C) число изделий, поставленных под наблюдение;

D) число запасных частей;

E) запасное число.

57.1 Какая технологическая операция повышает сопротивляемость деталей абразивному изнашиванию:

A) чистовое точение;

B) алмазное выглаживание;

C) хонингование;

D) ультразвуковое упрочнение;

E) гальваническое хромирование.

58.1 Резервирование бывает:

A) комплексное и техническое;

B) постоянно нагруженное и ненагруженное;

C) циклическое и пульсирующее;

D) полное и неполное;

E) сложное и простое.

59.1 Какая технологическая операция повышает сопротивляемость усталостному изнашиванию:

A) чистовое шлифование;

B) наплавка износостойких материалов;

C) алмазное выглаживание;

D) борирование;

E) дробеструйный наклеп.

59.2 Какая технологическая операция повышает сопротивляемость деталей абразивному изнашиванию:

A) чистовое точение;

B) алмазное выглаживание;

C) хонингование;

D) ультразвуковое упрочнение;

E) гальваническое хромирование.

60.1 Внутренние поверхности упрочняют:

A) пескоструйной обработкой;

B) раскаткой или дорнованием;

C) алмазным выглаживанием;

D) дробеструйным наклепом;

E) косточковой крошкой.

61.1 Для повышения надежности машин обкатка является:

A) ремонтным мероприятием;

B) организационным мероприятием;

C) эксплуатационным мероприятием;

D) показательным мероприятием;

E) общественным мероприятием.

62.1 Статистический контроль надежности проводят по следующим признакам:

A) техническому и технологическому;

B) экономическому и техническому;

C) альтернативному и количественному;

D) постепенному и последовательному;

E) все вышеперечисленные.

63.1 Одним из требований, предъявляемых к подшипниковым сплавам является:

A) упругость;

B) твердость;

C) коррозионная стойкость;

D) пластичность;

E) жесткость.

64.1 Легкая прирабатываемость относится к:

A) деталям шестерен;

B) медным сплавам;

C) алюминиям;

D) подшипниковым сплавам;

E) всем материалам.

65.1 Низкий коэффициент трения предъявляется к:

A) медным сплавам;

B) всем материалам;

C) сплавам алюминия;

D) деталям шестерен;

E) подшипниковым сплавам.

66.1 Высокое сопротивление изнашиванию и схватыванию предъявляется к:

A) подшипниковым сплавам;

B) всем материалам;

C) медным сплавам;

D) сплавам алюминия;

E) бронзе.

67.1 Для повышения надежностей деталей используется:

A) нарезание резьбы;

B) полимерные материалы;

C) подтяжка креплений;

D) их испытания;

E) контрольное взвешивание.

68.1 Резервирование применяется с целью:

A) повышение точности;

B) повышение количества испытуемых объектов;

C) понижение надежности сложных систем;

D) повышение надежности сложных систем;

E) увеличение факторов испытаний.

69.1 При резервировании замещение резервные элементы находятся в:

A) рабочем состоянии;

B) нагруженном состоянии;

C) обрабатываемом состоянии;

D) тяжелом состоянии;

E) отключенном состоянии.

70.1 При ненагруженном резервировании, резервные элементы находятся в:

A) отключенном состоянии;

B) рабочем состоянии;

C) легком состоянии;

D) тяжелом состоянии;

E) отсутствии.

71.1 При ненагруженном резервировании подразумевается:

A) рабочие детали;

B) запасные части;

C) дублирующие элементы;

D) измерительные части;

E) измерительный инструмент.

71.2 При резервировании размещением подразумевается:

A) рабочие детали;

B) запасные части;

C) дублирующие элементы;

D) измерительные части;

E) измерительный инструмент.

72.1 При постоянном резервировании элементы располагаются:

A) последовательностью;

B) прерывисто;

C) параллельно;

D) перпендикулярно;

E) на складе.

73.1 Элементы располагаются параллельно при резервировании:

A) замещением;

B) ненагруженном;

C) постоянном;

D) сложном;

E) простом.

74.1 При нагруженном резервировании элементы располагаются:

A) последовательно;

B) прерывисто;

C) перпендикулярно;

D) параллельно;

E) на складе.

75.1 Резервирование дает возможность создать:

A) надежные системы из элементов высокой надежности;

B) сложные машины;

C) простые машины;

D) надежные системы из элементов невысокой надежности;

E) всякие машины.

76.1 Техническое обслуживание это:

A) комплекс операций для восстановления полного или близкого к полному ресурса объекта с заменой или восстановлением любых деталей, включая базовые;

B) комплекс операций для восстановления работоспособности или исправности объекта;

C) комплекс операций по поддержанию работоспособности или исправности объекта

D) комплекс операций по замене масла в машинах;

E) комплекс операций по восполнению регулировочных работ, как отдельных агрегатов, так и машины в целом.

77.1 Что характеризует данная формулировка: «Свойство изделия сохранять работоспособность до предельного состояния с некоторыми перерывами для ТО и ремонта:

A) надежность;

B) долговечность;

C) ремонтопригодность;

D) безотказность;

E) износостойкость.

78.1 Наработка изделия, при достижении которой эксплуатация его должна быть прекращена независимо от технического состояния это:

A) полный технический ресурс;

B) остаточный технический ресурс;

C) назначенный ресурс;

D) суммарный технический ресурс;

E) эксплуатационный ресурс.

78.2 Наработка от начала до конца эксплуатации для невосстанавливаемого изделия или до ремонта для восстанавливаемого это:

A) полный технический ресурс;

B) остаточный технический ресурс;

C) назначенный ресурс;

D) доремонтный технический ресурс;

E) эксплуатационный ресурс.

78.3 Наработка восстанавливаемого изделия на протяжении его срока службы до списания это:

A) остаточный технический ресурс;

B) суммарный технический ресурс;

C) назначенный ресурс;

D) доремонтный технический ресурс;

E) эксплуатационный ресурс.

79.1 Состояние объекта, при котором он соответствует требованиям установленным технической документацией – это:

A) работоспособность;

B) исправность;

C) функциональность;

D) ремонтопригодность;

E) неисправность.

79.2 Состояние объёкта, при котором он способен выполнять заданные функции, сохраняя основные параметры в пределах значений, установленных технической документацией – это:

A) исправность;

B) функциональность;

C) ремонтопригодность;

D) работоспособность;

E) неисправность.

79.3 Величина, при которой детали (сопряжения), будучи оставленными, без изменения, проработают не менее одного межремонтного срока это:

A) календарный срок службы;

B) допустимый без ремонта размер;

C) межремонтный интервал;

D) срок службы до списания;

E) средний срок эксплуатации.

80.1 Наработка объекта, при достижении которой эксплуатация должна быть прекращена независимо от состояния объекта – это:

A) полный ресурс;

B) межремонтный ресурс;

C) назначенный ресурс;

D) межремонтная наработка;

E) интервал между капитальными ремонтами.

81.1 Состояние изделия, при котором оно способно выполнять заданные функции в течение некоторого времени (с параметрами, установленными в технической документации) это:

A) долговечность;

B) работоспособность;

C) сохраняемость;

D) безотказность;

E) исправность.

82.1 К молекулярно- механическому виду изнашивания относятся:

A) абразивное;

B) усталостное;

C) эрозионное;

D) кавитационное;

E) изнашивание при заедании.

82.2 К механическим видам изнашивания относятся:

A) абразивное;

B) усталостное;

C) эрозионное;

D) кавитационное;

E) все.

83.1 При усталостном изнашивании смазка оказывает влияние на:

A) уменьшение процесса изнашивания;

B) расширение трещин и откалывание частиц;

C) удаление продуктов износа;

D) создание масляного клина;

E) смягчение ударных нагрузок.

84.1 Какой фактор в наибольшей степени влияет на усталостную прочность деталей

A) наличие канавок, выточек, дефектов внутренней структуры металла;

B) эффект Ребиндера (наличие на поверхности ПАВ);

C) предел текучести металла;

D) температурный режим;

E) наличие влаги в окружающей среде.

85.1 Основной характеристикой внешнего трения является:

A) сила трения;

B) коэффициент трения;

C) вид трения;

D) наличие смазочного материала между трущимися поверхностями;

E) нагрузка на поверхность трения.

86.1 На усталостную прочность деталей оказывают влияние следующие факторы:

A) характер циклических нагрузок;

B) наличие на поверхностях деталей концентраторов напряжений;

C) дефекты внутренней структуры;

D) А, В, С;

E) твердость.

87.1 Отказы, по последствиям или затратам бывают:

A) постепенные и внезапные;

B) естественные и преднамеренные;

C) первой, второй и третьей группы сложности;

D) исследовательские и расчетно-графические;

E) эксплуатационные и ресурсные.

88.1 Отношение величины износа ко времени, в течение которого он возник это:

A) временная износостойкость;

B) интенсивность изнашивания;

C) износостойкость;

D) величина износа;

E) скорость изнашивания.

89.1 Последствием сочетания неблагоприятных факторов и внешних воздействий, при неправильной эксплуатации являются

A) постепенные отказы;

B) внезапные отказы;

C) кратковременные отказы;

D) конструкторские отказы;

E) непостоянные отказы.

90.1 Поверхностное разрушение металла детали вследствие его окисления – это

A) изнашивание;

B) усталостное разрушение;

C) электроэрозия;

D) варьирование;

E) коррозия.

91.1 Изнашивание при фреттинг-коррозии это:

A) изнашивание при наличии на поверхностях трения защитных пленок;

B) изнашивание соприкасающихся тел при малых колебательных перемещениях;

C) изнашивание в результате схватывания и глубинного вырывания материала;

D) изнашивание поверхности в результате воздействия потока жидкости или газа;

E) изнашивание в результате повторного деформирования микрообъемов материала.

92.1 К коррозионно - механическому виду изнашивания относятся:

A) абразивное;

B) усталостное;

C) эрозионное;

D) кавитационное;

E) окислительное.

93.1 Отказы, по причине возникновения бывают:

A) постепенные и внезапные;

B) естественные и преднамеренные;

C) первой, второй и третьей группы сложности;

D) исследовательские и расчетно-конструкторские;

E) эксплуатационные и ресурсные.

94.1 Отказы, в зависимости от причин их вызывающих, бывают:

A) естественные и преднамеренные;

B) постепенные и внезапные;

C) первой, второй и третьей группы сложности;

D) производственно-технологические и расчетно-конструкторские;

E) эксплуатационные и ресурсные.

95.1 Какой метод непригоден для измерения величины износа конкретной изношенной детали:

A) интегральный;

B) метод микрометража;

C) метод искусственных баз;

D) метод измерения кругломером;

E) метод отпечатков.

96.1 Какой вид изнашивания относится к группе механического:

A) кавитационное;

B) окислительное;

C) фреттинг-коррозия;

D) при заедании;

E) коррозионное.

96.2 К молекулярно- механическому виду изнашивания относятся:

A) абразивное;

B) усталостное;

C) эрозионное;

D) кавитационное

E) изнашивание при заедании;

96.3 К механическому виду изнашивания относится:

A) окислительное;

B) при заедании;

C) абразивное;

D) при фретинг- коррозии;

E) ускоренное.

96.4 К молекулярно- механическому виду изнашивания относится:

A) окислительное;

B) абразивное;

C) эрозионное;

D) при заедании;

E) кавитационное.

96.5 К коррозионно- механическому виду изнашивания относится:

A) абразивное;

B) эрозионное;

C) кавитационное;

D) при заедании;

E) окислительное.

96.6 К механическому виду изнашивания относится:

A) кавитационное;

B) при заедании;

C) окислительное;

D) при фретинг- коррозии;

E) неполное.

97.1 К механическому виду изнашивания относится:

A) при заедании;

B) окислительное;

C) при фретинг- коррозии;

D) гидроабразивное;

E) полное.

98.1 К механическому виду изнашивания относится:

A) газоабразивное;

B) при заедании;

C) окислительное;

D) при фретинг- коррозии;

E) неполное.

98.2 К механическому виду изнашивания относится:

A) при заедании;

B) усталостное;

C) окислительное;

D) полное;

E) неполное.

98.3 К механическому виду изнашивания относится:

A) при заедании;

B) окислительное;

C) эрозионное;

D) полное;

E) неполное.

98.4 К коррозионно- механическому виду изнашивания относится:

A) при фретинг- коррозии;

B) абразивное;

C) эрозионное;

D) полное;

E) неполное.

98.5 Абразивное изнашивание относится к:

A) молекулярно- механическому;

B) механическому;

C) коррозионно- механическому;

D) полному;

E) неполному.

98.6 Гидроабразивное изнашивание относится к:

A) коррозионно- механическому;

B) молекулярно- механическому;

C) механическому;

D) полному;

E) неполному.

98.7 Газоабразивное изнашивание относится к:

A) ускоренному;

B) полному;

C) неполному;

D) механическому;

E) молекулярно- механическому.

98.8 Усталостное изнашивание относится к:

A) ускоренному;

B) полному;

C) неполному;

D) молекулярно- механическому;

E) механическому.

98.9 Эрозионное изнашивание относится к:

A) механическому;

B) ускоренному;

C) полному;

D) неполному;

E) сокращенному.

98.10 Кавитационное изнашивание относится к:

A) полному;

B) механическому;

C) неполному;

D) ускоренному;

E) сокращенному.

98.11 Изнашивание при заедании относится к:

A) полному;

B) неполному;

C) ускоренному;

D) молекулярно- механическому;

E) механическому.

98.12 Окислительное изнашивание относится к:

A) молекулярно- механическому;

B) коррозионно- механическому;

C) механическому;

D) полному;

E) ускоренному.

98.13 Изнашивание при фретинг- коррозии относится к:

A) механическому;

B) молекулярно- механическому;

C) коррозионно- механическому;

D) ускоренному;

E) полному.

99.1 Что означает буква в формуле F= :

A) толщина масляного слоя;

B) скорость;

C) площадь контакта;

D) вязкость масла;

E) сила трения.

100.1 По этой формуле определяется F=f*p:

A) коэффициент трения;

B) сила трения;

C) давление;

D) сила скольжения;

E) сила покоя.

101.1 По этой формуле определяется F=f*

A) сила трения скольжения;

B) сила трения качения;

C) сила трения покоя;

D) сила давления;

E) сила сопротивления.

102.1 К мерам рассеяния случайной величины относятся:

A) размах, мода, медиана;

B) дифференциальная, интегральная функции;

C) размах, дисперсия, средняя арифметическая;

D) размах, дисперсия, среднее квадратическое отклонение;

E) средняя взвешенная.

103.1 Основой характеристикой случайного события является:

A) число;

B) случайная величина;

C) вероятность;

D) теория вероятностей;

E) теория надежности.

104.1 Важнейшей характеристикой случайной величины является:

A) случайное событие;

B) вероятность;

C) число;

D) теория распределения;

E) распределение.

105.1 Мерой совпадения или расхождения опытной и теоретической вероятностей является:

A) критерий согласия;

B) случайное событие;

C) случайная величина;

D) распределение;

E) число.

106.1 Случайная величина бывает:

A) событие и вероятность;

B) целым и дробным;

C) дискретная и непрерывная;

D) знаменателем и числителем;

E) длинным и коротким.

107.1 Доверительный интервал характеризует:

A) точность оценки;

B) надежность;

C) безотказность;

D) долговечность;

E) сохраняемость.

108.1 По этой формуле Q(t)=1-P*(t) определяют:

A) вероятность безотказной работы;

B) коэффициент надежности;

C) среднюю наработку на отказ;

D) вероятность отказа;

E) параметр потока отказа.

108.2 По этой формуле определяют:

A) интенсивность отказов;

B) поток отказов;

C) параметр потока отказов;

D) вероятность отказов;

E) наработка на отказ.

109.1 По этой формуле определяют:

A) интенсивность отказов;

B) наработку на отказ;

C) параметр потока отказов;

D) вероятность отказа;

E) средний ресурс.

110.1 Величина относительной ошибки определяется по формуле:

A) ;

B) ;

C) ;

D) ;

E)

111.1 Точность оценки определяется:

A) доверительным интервалом;

B) надежностью;

C) безотказностью;

D) наработкой на отказ;

E) долговечностью.

112.1 Формула Q(t)=1-P*(t) означает:

A) вероятность безотказной работы;

B) коэффициент надежности;

C) параметр потока отказа;

D) средняя наработка на отказ;

E) вероятность отказа.

113.1 Вероятность отказа определяют по формуле:

A) p(t)=1-Q(t);

B) p(t)+Q(t)=1;

C) p(t)= ;

D) Q(t)=1-p(t);

E) Q(t)= .

114.1 Формула означает:

A



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-01-14 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: