Структура и механизм действия ферментов




История изучения

Термин фермент предложен в XVII веке химиком ван Гельмонтом при обсуждении механизмов пищеварения.

В кон. ХVIII — нач. XIX вв. уже было известно, что мясо переваривается желудочным соком, а крахмал превращается в сахар под действием слюны. Однако механизм этих явлений был неизвестен.

В XIX в. Луи Пастер, изучая превращение углеводов в этиловый спирт под действием дрожжей, пришёл к выводу, что этот процесс (брожение) катализируется некой жизненной силой (ферментом), находящейся в дрожжевых клетках, причём он считал, что эти «силы» неотделимы от структуры живой клетки дрожжей. Эта точка зрения господствовала в науке в течение длительного времени и шла вразрез с господствовавшей тогда теорией брожения Ю. Либиха, согласно которой все процессы брожения представлялись чисто химическими явлениями каталитического характера (будто бы спиртовое брожение происходит вследствие того, что молекулярные колебания разлагающихся частиц дрожжей передаются сахару и сахар начинает распадаться на спирт и углекислый газ; таким образом дрожжи вызывают брожение не при жизни, а только после своей смерти).

Различные точки зрения о природе спиртового брожения в теоретическом споре Л. Пастера с одной стороны, и механицистов М. Бертло и Ю. Либиха — с другой привели к разделению в научной среде двух соответствующих терминов. Собственно ферментами стали называть «организованные ферменты», то есть сами живые микроорганизмы. В противовес этому подходу в 1876 году В. Кюне предложил термин энзим для обозначения «неорганизованных ферментов», секретируемых клетками, например, в желудок (пепсин) или кишечник (трипсин,амилаза).

Через два года после смерти Л. Пастера в 1897 году Э. Бухнер опубликовал работу «Спиртовое брожение без дрожжевых клеток», в которой экспериментально показал, что бесклеточный дрожжевой сок осуществляет спиртовое брожение так же, как и неразрушенные дрожжевые клетки. В 1907 году за эту работу он был удостоен Нобелевской премии. Впервые высокоочищенный кристаллический фермент (уреаза) был выделен в 1926 году Дж. Самнером. В течение последующих 10 лет было выделено ещё несколько ферментов, и белковая природа ферментов была окончательно доказана.

 

Функции ферментов

Существуют два основных пути повышения скорости химической реакции. Первый путь — повышение температуры, то есть ускорение теплового движения молекул, которое приводит к увеличению доли молекул, обладающих достаточной внутренней энергией для достижения переходного состояния. Как правило, повышение температуры на 10 °C вызывает ускорение химической реакции приблизительно в 2 раза.

Второй путь ускорения химической реакции — добавление катализатора. Катализаторы ускоряют химические реакции, находя «обходные пути», позволяющие молекулам преодолевать активационный барьер на более низком энергетическом уровне. Катализатор на промежуточной стадии взаимодействует с реагентом с образованием нового комплексного соединения, переходному состоянию которого соответствует значительно более низкая энергия активации по сравнению с переходным состоянием реагента в некатализируемой реакции. Затем комплекс реагент-катализатор распадается на продукт и свободный катализатор, который может опять соединиться с другой молекулой и повторить весь цикл. Именно таким образом катализаторы снижают энергию активации химической реакции, в их присутствии гораздо более значительная доля молекул данной популяции вступает в реакцию в единицу времени. Ферменты, так же как и другие катализаторы, соединяются со своими субстратами в ходе каталитического цикла.

Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ в другие. Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах. К 2013 году было описано более 5000 разных ферментов. Они играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.

Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону. Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность — константа связывания некоторых субстратов с белком может достигать 10−10 моль/л и менее. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду.

Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка телёнка, створаживает около 106 молекул казеиногена молока за 10 мин при температуре 37 °C.

При этом эффективность ферментов значительно выше эффективности небелковых катализаторов — ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы — в сотни и тысячи раз.

 

Классификация ферментов

В 1961 г. специальной комиссией Международного биохимического союза была предложена систематическая номенклатура ферментов. Согласно этой номенклатуре ферменты были поделены на шесть групп в соответствии с общим типом реакции, которую они катализируют. Каждый фермент при этом получил систематическое название, точно описывающее катализируемую им реакцию. Однако, поскольку многие из этих систематических названий оказались очень длинными и сложными, каждому ферменту было также присвоено и тривиальное, рабочее название, предназначенное для повседневного употребления. В большинстве случаев оно состоит из названия вещества, на которое действует фермент, указания на тип катализируемой реакции и окончания -аза.

 

Структура и механизм действия ферментов

Активность ферментов определяется их трёх- и четырёхмерной структурой.

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная и четвертичная структуры белков разрушается при нагревании, изменении pH или воздействии некоторых химических веществ.

На сегодняшний момент описано несколько механизмов действия ферментов. В простой ферментативной реакции может участвовать только одна молекула субстрата, связывающаяся с ферментом с образованием продукта.

Однако на самом деле во многих ферментативных реакциях метаболизма принимают участие и связываются с ферментом две, а иногда даже три молекулы разных субстратов. Такие реакции обычно включают перенос атома или функциональной группы от одного субстрата к другому. Такие реакции могут протекать по двум различным механизмам. В реакциях первого типа, называемых реакциями единичного замещения, два субстрата связываются с ферментом либо специфическим, либо случайным образом с образованием комплекса, который затем распадается на продукты.

Второй класс двухсубстратных реакций составляют реакции, протекающие по механизму двойного замещения (механизм типа «пинг-понг»).

В этих реакциях с каталитическим центром фермента в данный момент времени связан только один из двух субстратов. Присоединение первого субстрата сопровождается переносом его функциональной группы на молекулу фермента. Только после удаления продукта, образовавшегося из первого субстрата, второй субстрат может связаться с ферментом и принять функциональную группу.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: