Работа усилительных каскадов в области низких частот




 

В области низких частот работа усилительных каскадовопределяется наличием разделительных и блокировочных конденсаторов, каждый из которых образует фильтр верхних частот совместно с определённым сопротивлением, причём можно считать, что эти фильтры соединены последовательно. В этом случае результирующая частота среза амплитудно-частотной характеристики (АЧХ) может быть определена как:

 

 

или, для случая когда все nфильтров имеют одинаковую частоту среза f0 :

 

.

 

Каждая частота среза может быть определена как:

 

,


где Ri.экв– эквивалентное сопротивление схемы относительно зажимов i-го конденсатора, при условии, что остальные конденсаторы закорочены.

 

Работа усилительных каскадов в области высоких частот

 

В области высоких частот работа усилительных каскадовв основном определяется двумя факторами:

- частотной зависимостью коэффициента усиления по току транзисторов, которая определяется их физико-химическими и технологическими параметрами;

- наличием паразитных ёмкостей или специально установленных конденсаторов, образующих с внешними сопротивлениями фильтры нижних частот.

Эти факторы приводят к снижению усиления в области высоких частот, и их необходимо принимать во внимание при проектировании усилителей, граничная частота которых превышает 100 кГц.

 

Дифференциальный каскад

 

Дифференциальный каскад – это симметричный усилитель постоянного напряжения с двумя входами и двумя выходами. Основная его схема представлена на рисунке 5. В общую эмиттерную цепь включён источник тока на транзисторе VT2. За счёт этого обеспечивается постоянство эмиттерных токов транзисторов VT1 и VT3: IЭ1 IЭ3 = IK2. Если ЕС1 = ЕС2 = 0, вследствие симметрии схемы ток IK2 равномерно распределяется между транзисторами VT1 и VT3:

 

IЭ1 = IЭ3 = IK2 /2,

 


откуда, пренебрегая базовым током, найдём, что:

 

IК1 + IК3 = IK2 .

 

Рис. 5. Основная схема дифференциального усилителя

 

Эти соотношения не изменятся, если входные сигналы получат одинаковые приращения (синфазный сигнал). Поскольку резисторы RК2 и RК1 одинаковы, коллекторные токи транзисторов дифференциальной пары остаются равными друг другу, не изменяется и разность выходных напряжений: UВЫХ1 - UВЫХ2 » 0,то есть коэффициент усиления синфазного сигнала в первом приближении равен нулю.

Если для определённости положить, что ЕС1 > ЕС2, то изменяется распределение токов в дифференциальной паре:IК1увеличивается, а IК3 соответственно уменьшается, а их сумма остаётся равной IK2. Поэтому приращения коллекторных токов транзисторов VT1 и VT3 равны по абсолютной величине и противоположны по знаку:DIК1 = -DIК2.

Приращения токов IК1 и IК3вызывают соответствующие приращения напряжений на резисторах RK1 и RK2. Таким образом, в отличие от синфазного управления, разность входных напряжений вызывает изменение выходных напряжений.

Заметим, что изменение напряжений база-эмиттер под воздействием температуры действует как синфазный сигнал и, следовательно, не влияет на работу схемы. Поэтому усилитель на основе дифференциального каскада хорошо приспособлен для усиления сигналов постоянного тока и является основой для создания операционных усилителей.

В том случае, когда необходимо усилить не разность напряжений, а только одно входное напряжение, другой вход каскада можно заземлить, в результате чего дифференциальное напряжение будет равно ЕС1 либо –ЕС2, в зависимости от того, какой из входов заземлён.

Коэффициенты усиления для дифференциального сигнала по выходам 1 и 2 отличаются только знаком, так как один из транзисторов работает в схеме включения с ОЭ, другой – с ОБ:

 

 

то есть приращения коллекторных напряжений равны, но имеют противоположные знаки.

На самом деле дифференциальный каскад реагирует и на изменение синфазного сигнала. Чтобы определить коэффициент усиления синфазного сигналаKU.СФ, будем считать, что в эмиттерные цепи дифференциальной пары включён источник тока с сопротивлением rИТ. Если к обоим входам приложить одно и то же напряжение UСФ, то ток равномерно распределится между транзисторами VT1 и VT2. При этом их можно рассматривать как два параллельно включённых эмиттерных повторителя с общим эмиттерным сопротивлением rИТ. Задавая приращение DUСФ, найдём приращение тока коллектора транзистора VT1 или VT2:

 

 

Тогда для коэффициента усиления синфазного сигнала получим:


 

то есть КU.СФ может быть сделан много меньше единицы, но не равен нулю.

Одним из параметров качества дифференциального усилителя является коэффициент ослабления синфазного сигнала:

,

 

показывающий, во сколько раз коэффициент усиления дифференциального сигнала больше коэффициента усиления синфазного сигнала.

Входное сопротивление для дифференциального сигнала зависит как от режима (тока IК2), так и от параметров транзисторов:

 

. (7)

 

В режиме большого сигнала работа дифференциального усилителя существенно отличается от работы одиночного транзистора, так как передаточная характеристика дифференциальной пары описывается гиперболическим тангенсом:

транзистор коллектор эмиттер дифференциальный каскад

(8)

 

при условии, что ЕС2 = 0.

Передаточная характеристика, описываемая выражением (8), приведена на рисунке 6. Линейный участок этой характеристики составляет около ± 2jТ, или ± 50 мВ.

Как правило, транзисторы, образующие дифференциальную пару, при равных токах эмиттера имеют несколько отличающиеся напряжения база-эмиттер, что обусловлено технологическим разбросом площадей эмиттеров. Или, что то же самое, при одинаковых напряжениях база-эмиттер токи эмиттеров, а значит, и коллекторов будут отличаться:

 

(9)

 

где IS1, IS3 – ток насыщения обратно смещённого перехода база-эмиттер, обусловленный площадью S p-n перехода.

Рис. 6. Проходная характеристика дифференциального каскада

 

Если транзисторы VT1 и VT3 выполнены в едином технологическом цикле, из выражения (9) следует, что:

 

 

С другой стороны, если потребовать, чтобы токи коллекторов транзисторов дифференциальной пары были равны, на один из входов необходимо подать компенсирующее напряжение, знак которого будет определяться тем, какой из транзисторов имеет большую площадь эмиттера:

 


(10)

 

где Si – площадь эмиттера i-го транзистора.

Выражение (10) определяет напряжение сдвига, то есть такое напряжение, которое нужно приложить ко входу дифференциального каскада, чтобы токи транзисторов были равны и выходное напряжение:

 

UВЫХ1 - UВЫХ2 = 0.

 

Напряжение сдвига зависит ещё и от других факторов: b транзистора, температуры и т.д. Типичное значение напряжения разбаланса для транзисторов, выполненных на одной подложке, составляет 2,5–5 мВ. Регулировку нуля дифференциального каскада можно осуществлять подбором резисторов RK, подачей напряжения соответствующей полярности на один из входов или установкой в эмиттер транзистора резистора, сопротивление которого меньше, чем rЭ, чтобы несколько увеличить отрицательную обратную связь по току.

 




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-01-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: