Характеристика источников рентгеновского излучения.




Источниками рентгеновского излучения является рентгеновская трубка, некоторые радиоактивные изотопы, ускорители (бетатрон) и накопители электронов (синхротронное излучение), лазеры и др.

Бетатрон – циклический ускоритель электронов, в котором электроны ускоряются вихревым электрическим полем, порожденным переменным магнитным полем. Обычно энергия электронов в бетатроне не выше 50 МэВ.

Линейный ускоритель — ускоритель заряженных частиц, в котором траектории частиц близки к прямой линии. Максимальная энергия электронов, полученная в линейном ускорителе, 20 ГэВ, протонов до 800 МэВ. В линейном ускорителе электронов электроны впрыскиваются в трубку ускорителя и разгоняются там с помощью электромагнитного поля высокой частоты. Может быть использован как источник рентгеновское излучения. С этой целью пучок электронов направляется на мишень, изготовленного из тяжелого тугоплавкого металла. В результате взаимодействия электрона с ядром атома мишени образуется фотон, а электрон отражается с меньшей энергией. Пучок фотонов, с энергией соответствующей рентгеновскому излучению, проходит через выравнивающий фильтр, лучу придается нужная форма с помощью коллиматора до попадания на больного.

Рентгеновская трубка — электровакуумный прибор для получения рентгеновских лучей.

Простейшая рентгеновская трубка состоит из стеклянного баллона с впаянными электродами — катодом и анодом (антикатодом). Электроны, испускаемые катодом, ускоряются сильным электрическим полем в пространстве между электродами и бомбардируют анод. При ударе электронов об анод их кинетическая энергия частично преобразуется в энергию рентгеновского излучения. Важным компонентом рентгеновской трубки является электронная пушка (электронный прожектор), устройство для создания направленного потока электронов; применяется в телевизионных трубках, рентгеновской аппаратуре, электронных микроскопах.

Таким образом, чтобы получать рентгеновское излучение за счет взаимодействия электронов с веществом, нужно иметь источник электронов, средства их ускорения до больших скоростей и мишень, способную выдерживать электронную бомбардировку и давать рентгеновское излучение нужной интенсивности. Устройство, в котором все это есть, называется рентгеновской трубкой. В газоразрядных трубках содержится небольшое количество газа, и когда на электроды трубки подается большая разность потенциалов, атомы газа превращаются в положительные и отрицательные ионы. Положительные движутся к отрицательному электроду (катоду) и, падая на него, выбивают из него электроны, а они, в свою очередь, движутся к положительному электроду (аноду) и, бомбардируя его, создают поток рентгеновских фотонов.

В рентгеновской трубке (Рис. 1), источником электронов является вольфрамовый катод, нагреваемый до высокой температуры. Электроны ускоряются до больших скоростей высокой разностью потенциалов между анодом (или антикатодом) и катодом. Поскольку электроны должны достичь анода без столкновений с атомами, необходим очень высокий вакуум, для чего нужно хорошо откачать трубку. Электроны фокусируются на аноде с помощью электрода особой формы, окружающего катод. Этот электрод называется фокусирующим и вместе с катодом образует «электронный прожектор» трубки. Подвергаемый электронной бомбардировке анод должен быть изготовлен из тугоплавкого материала, поскольку большая часть кинетической энергии бомбардирующих электронов превращается в тепло. Кроме того, желательно, чтобы анод был из материала с большим атомным номером, т.к. выход рентгеновского излучения растет с увеличением атомного номера. В качестве материала анода чаще всего выбирается вольфрам, атомный номер которого равен 74.

Рис. 1 Рентгеновская трубка Кулиджа. При бомбардировке электронами вольфрамовой антикатод испускает характеристическое рентгеновское излучение. Поперечное сечение рентгеновского пучка меньше реально облучаемой площади. 1 – электронный пучок; 2 – катод с фокусирующим электродом; 3 – стеклянная оболочка (трубка); 4 – вольфрамовая мишень (антикатод); 5 – нить накала катода; 6 – реально облучаемая площадь; 7 – эффективное фокальное пятно; 8 – медный анод; 9 – окно; 10 – рассеянное рентгеновское излучение.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: