Тема урока: Фотоэффект. Уравнение Эйнштейна




.

В конце 19 века многие ученые считали, что развитие физики завершилось. Законы механики и теория всемирного тяготения были известны уже более 200 лет. Максвеллом была завершена теория электромагнетизма. Установлены законы сохранения энергии, импульса и электрического заряда.

Однако к началу 20 века возникли некоторые проблемы, которые касались физической природы излучения и вещества и их взаимодействия друг с другом. В рамках классической физики возникали существенные противоречия при объяснении экспериментальных данных для процессов поглощения и испускания света атомами, закономерностей испускания электромагнитного излучения нагретыми телами и многое другое.

Анализ данных противоречий привел к революции в физике. И в течение последующих 30 лет были заложены основы новой — квантовой физики, которая пришла на смену классическим представлениям при рассмотрении явлений, происходящих на атомном и субатомном уровнях.

Известно, что все нагретые тела испускают тепловое электромагнитное излучение, интенсивность которого зависит от температуры тела. При этом излучение, испускаемое телами, содержит волны различных частот. А эксперименты показали, что спектр теплового излучения является непрерывным.

Согласно волновой теории света, испускание и поглощение электромагнитных волн рассматривается как непрерывный процесс, в результате которого энергия источника или приемника волн также меняется непрерывно. Но тогда, нагретое тело, непрерывно излучающее электромагнитные волны, должно терять энергию и, как следствие, охлаждаться до абсолютного нуля. Следовательно, не возможно тепловое равновесие между веществом и излучением. А это противоречит экспериментам.

Для объяснения этих противоречий 14 декабря 1900 года Макс Планк в докладе на заседании немецкого физического общества выдвинул революционную гипотезу о том, что атомы излучают энергию не непрерывно, а отдельными порциямиквантами световой энергии. В соответствии с этой гипотезой энергия любой колебательной системы, имеющей частоту собственных колебаний, может принимать лишь определенные значения, отличающиеся на целое число элементарных порций — квантов энергии:

В этой формуле n — целое положительное число (количество квантов), а h — коэффициент пропорциональности, который называют постоянной Планкафундаментальная постоянная. Ее приближенное значение, принимаемое при решении задач, составляет 6,63×10–34 Дж×с. Сам Планк поэтически назвал новую фундаментальную постоянную «таинственным послом из реального мира ».

Представление о квантах световой энергии объяснило многие экспериментальные факты, которые ранее не возможно было объяснить на основании классических представлений о свете. В развитии представления о природе света важный шаг был сделан при изучении одного замечательного явления, которое в свое время открыл Генрих Рудольф Герц.

В 1887 году, изучая искровой разряд, он обнаружил, что пробой воздушного промежутка между электродами искрового разрядника происходит при меньшем напряжении, если освещать отрицательно заряженный электрод ультрафиолетовым излучением. Дальнейшие эксперименты показали, что отрицательно заряженная цинковая пластина при облучении ультрафиолетовым светом разряжается. Оба эти явления можно объяснить, только предполагая, что под действием падающего излучения из металла вылетают электроны — отрицательно заряженные частицы. Это явление получило название фотоэффект.

В настоящее время под фотоэффектом (или фотоэлектрическим эффектом) понимается явление взаимодействия электромагнитного излучения с веществом, в результате которого энергия излучения полностью передается электронам вещества.

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом, а вылетающие электроны — фотоэлектронами.

Если же фотоэффект сопровождается увеличением концентрации носителей заряда в веществе, а, следовательно, и увеличение электропроводности вещества, то его называют внутренним фотоэффектом.

Систематическое изучение явления фотоэффекта было проведено в 1888 — 1889 годах выдающимся русским физиком Александром Григорьевичем Столетовым.

Установка для изучения внешнего фотоэффекта представляет собой стеклянный баллон, из которого откачен воздух. Внутри баллона располагается два впаянных электрода. Один из них изготовлен из медной сетки, к которой подводился положительный заряд, а второй электрод представляет собой отрицательно заряженную цинковую пластинку. Внутрь баллона через кварцевое окошко, прозрачное для ультрафиолетового излучения, попадает свет на катод. Под действием падающего света катод испускает электроны, которые замыкают цепь. Находящийся в цепи амперметр фиксирует наличие тока.

Наблюдения Столетова показали, что даже при отсутствии напряжения между электродами под действием падающего ультрафиолетового излучения в цепи возникает электрический ток, получивший название фототок.

Изменяя напряжение между электродами с помощью реостата, Столетов получил зависимость силы фототока от напряжения (иными словами — вольт-амперную характеристику фотоэффекта).

Как видно из зависимости, если увеличивать напряжение между электродами, то сила фототока также будет расти. Однако рост силы фототока происходит лишь до некоторого максимального значения, которое называется фототоком насыщения. Дальнейшее увеличение напряжения не приводит к росту фототока. Значит, при фототоке насыщения все электроны, вылетевшие с поверхности металла за 1 секунду, за это же время попадают на анод.

Если изменить полярность напряжения, то в электростатическом поле между электродами фотоэлектроны будут тормозиться, и, как следствие, будет уменьшаться сила фототока. При некотором значении отрицательного напряжения, которое называют задерживающим напряжением, фототок полностью прекращается.

Объяснить это явление можно на основании теоремы о кинетической энергии. Согласно ей, работа задерживающего электрического поля равна изменению кинетической энергии фотоэлектронов, при условии, что их скорость намного меньше скорости света в вакууме. Следовательно, зная значение задерживающего напряжения, можно найти максимальную кинетическую энергию фотоэлектронов.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового излучения. Но есть некоторые металлы, например, такие как литий, натрий, калий или цезий, которые испускают электроны и при облучении видимым светом.

Александр Столетов экспериментально установил три закона для внешнего фотоэффекта.

Первый закон: сила фототока насыщения, определяемая максимальным числом фотоэлектронов, вырываемых из катода за единицу времени, прямо пропорциональна интенсивности падающего излучения.

Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением его частоты.

Здесь подчеркнем, что фотоэлектроны не имеют фиксированной кинетической энергии при вылете из катода: она меняется в некотором диапазоне от нуля до максимального значения, так как фотоэлектроны могут часть своей энергии, полученной от падающего излучения, передать частицам вещества перед вылетом.

Минимальная частота (или максимальная длина волны) падающего света, при которой еще возможен фотоэффект, называется красной границей фотоэффекта.

Такое название связано с тем, что минимальная частота излучения в видимом диапазоне соответствует красному свету. Но следует помнить, что красная граница для различных веществ различна и необязательно соответствует красному цвету.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-07-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: