свойства и схемы цепей ООС




Классификация обратных связей в усилителях

 

 

 

 

Влияние ООС на работу усилителя

1. Отрицательная обратная связь изменяет в (1+β∙Ku) раз входное и выходное сопротивления усилителя. При этом они могут как увеличиваться, так и уменьшаться в зависимости от способа соединения цепи ООС со входом и

выходом усилителя – последовательно или параллельно. Способы подключения цепи ООС ко входу усилителя показаны на рис. 2, а к выходу усилителя – на рис. 3.

 

Рис. 2

На рис. 2а, напряжение на входе усилителя после замыкания цепи ООС возросло в (1+β∙Ku) раз: Uсигн = Uвх∙(1+β∙Ku), а входной ток остался прежним. Значит, по закону Ома (R=U/I) и сопротивление возросло в (1+β∙Ku) раз.

Рис. 3

При последовательной по выходу ООС через ее цепь проходит выходной ток усилителя (ток нагрузки), поэтому ее часто называют обратной связью по току. Несколько примеров разных включений цепи ООС показано на рис. 4 и рис. 5. Цепь ООС является четырехполюсником, который обычно замыкается через «землю» цепи, явным образом это показано на рис. 4б.

2. Отрицательная обратная связь расширяет частотный диапазон усилителя. Нижняя и верхняя граничные частоты увеличиваются примерно в (1+β∙Ku), если усилитель имеет спад АЧХ 6 дБ/октаву. На самом деле, при охвате усилителя ООС могут происходить самые разные процессы, вплоть до превращения усилителя в генератор, но если все работает, то частотный диапазон обязательно расширяется. Это иллюстрируют АЧХ исходного усилителя (синяя) и усилителя, охваченного ООС (красная) на рис. 6. Там же показаны границы частотного диапазона без ООС и с ней. Граничной частотой считается такая частота, где коэффициент усиления уменьшается в корень из двух (примерно 1,41) раз.

 


3. Введение ООС уменьшает нелинейные искажения усилителя (коэффициент гармоник) примерно в (1+β∙Ku) раз. Это происходит оттого, что ООС линеаризует систему и уменьшает ее ошибки. Изменяется и амплитудная характеристика усилителя (рис.7), на ней плавный переход к области насыщения превращается в довольно острый излом – ООС линеаризует этот участок и «пытается» вытянуть пропорциональное усиление даже там, где оно уже начинает уменьшаться.

На самом деле (1+β∙Ku) – это очень приблизительная оценка, поскольку для анализа нелинейных цепей используется уже совсем другая математика и там все очень сильно зависит от нелинейности усилителя. Но, тем не менее, искажения усилителя снижаются тем сильнее, чем глубже ООС, и в «простых» случаях формула (1+β∙Ku) работает достаточно хорошо.

Итак, охват усилителя отрицательной обратной связью изменяет ряд его основных параметров в (1+β∙Ku) раз. Проанализировав это выражение математически, не вникая в его физический смысл. Очевидно, что тут возможны три варианта:

а) β∙Ku << 1 и это слагаемое практически не влияет на результат. Это происходит при очень малой глубине ООС.

б) β∙Ku ≈ 1. В этом случае можно считать, что глубина ООС становится достаточно большой, чтобы начать оказывать влияние на параметры усилителя.

г) β∙Ku >> 1. Тут обратная связь очень глубока. Интересно, что для очень глубокой ООС формула (4) превращается вот во что:

То есть, свойства усилителя (коэффициент усиления и АЧХ) определяются исключительно параметрами цепи ООС. При значении β∙Ku = 100, погрешность применения вместо формулы (4) упрощенной формулы (5) составляет 1%, такой погрешностью в большинстве случаев можно пренебречь. А в реальных схемах на операционных усилителях величина β∙Ku может достигать десятков тысяч, делая погрешность «упрощения формулы» практически незначимой.

Следует обратить внимание на то, что в формуле присутствует величина β∙Ku, как произведение. При этом одинаковое значение этого произведения можно получить как при большой величине Ku и маленьком β, так и при большом β и небольшом Ku, так что в данном смысле эти два параметра равнозначны. Термин «глубина обратной связи» часто ассоциируется с термином «коэффициент передачи цепи ООС», который обозначает величину β, а хорошо было бы ввести некоторое понятие, отражающее именно величину β∙Ku, как более важную для применения.

После, имеет место быть оценка степени влияния отрицательной обратной связи, исходя из физического смысла и электроники. Обращаясь к рис. 1. Внутри усилителя присутствует два напряжения: Uвх и Uоос. Очевидно, что степень влияния ООС на усилитель зависит от соотношения этих напряжений. Если Uоос << Uвх, то сигнал обратной связи незначителен на фоне входного сигнала усилителя, и ООС влияет слабо. И наоборот, если Uоос >> Uвх, то главную роль во входном сигнале усилителя играет именно ООС (т.к. Uсигн = Uоос + Uвх и значит входной сигнал усилителя практически равен Uоос). С другой стороны, Uоос получается из напряжения Uвх, после усиления его усилителем и ослабления цепью ООС. Как оно получается? Мысленно разомкнем петлю обратной связи в точке А (разрывать цепь электрически можно не всегда – иногда от этого изменяется величина β), рис. 8.

 

Со стороны точки приложения сигнала ООС (это точка А), входной сигнал проходит два элемента – усилитель и цепь ООС. Общий коэффициент передачи последовательно соединенных устройств равен произведению их коэффициентов передачи: Ku∙β. Эта величина является коэффициентом усиления сигнала в петле обратной связи и называется петлевым усилением:

 

 

 

С другой стороны:

 

 

 

Это то самое взаимоотношение между напряжением ООС и входным напряжением усилителя, которое показывает степень влияния обратной связи. Кроме того, оно полностью соответствует выражению, которое было выведено, математически анализируя формулу коэффициента усиления усилителя с замкнутой ООС. Так что глубину обратной связи характеризует именно петлевое усиление, и именно его имеют ввиду, когда говорят о глубине ООС. Хотя иногда под глубиной ООС подразумевают коэффициент передачи цепи обратной связи β – в случаях, когда Ku велико, и величину A = β∙Ku определяет в основном β.

Таким образом, именно петлевое усиление определяет свойства усилителя, которые он проявляет для внешнего мира. Именно на эту величину изменяются коэффициент усиления, входное и выходное сопротивления, граничные частоты и коэффициент гармоник.

В некоторых случаях вычисление петлевого усиления по формуле (6) может быть затруднено, тогда можно найти его из изменения коэффициента усиления усилителя при охвате его ООС:

 

Последнее выражение достаточно точно, при А≥100. Проще всего определять таким способом петлевое усиление по логарифмической АЧХ усилителя (диаграмме Боде). На рис. 9 петлевое усиление А = 100 – 60 = 40 дБ, т.е. 100 раз. На самом деле А = 100 – 1 = 99 раз (39,9 дБ), но этим зачастую можно пренебречь, поэтому обычно в таких случаях говорят, что петлевое усиление равно ровно 40 дБ.

 

Операционные усилители

Понятие операционного усилителя появилось во второй половине ХХ века, когда получили широкое распространение аналоговые электронно-вычислительные машины (АВМ). Принцип их применения был основан на том, что подбиралась соответствующая электрическая цепь, описываемая теми же уравнениями, что и исследуемый неэлектрический процесс. Измеряя напряжения и токи в цепи, получали значения параметров исследуемого процесса. Для АВМ требовались блоки (функциональные узлы), выполняющие определенные математические операции: масштабирование (усиление), сложение, вычитание, интегрирование, дифференцирование и др. Довольно быстро пришли к выводу, что вместо того, чтобы разрабатывать каждый такой блок по-отдельности, проще получить их все из одинаковых усилителей, охваченных цепью ООС – так и появились ОУ. В настоящее время возможности цифровых вычислительных машин настолько велики, что моделирование (и управление) проще и точнее выполнять на них, и АВМ практически исчезли, а операционные усилители остались – они оказались очень удобными для применения, ведь из них можно получить практически любое устройство, всего лишь охватив их соответствующей ООС.

Так что получить, например, усилитель с нужной АЧХ достаточно просто, достаточно охватить его ООС, имеющей АЧХ «зеркальной» к требуемой (рис. 10).

 

свойства и схемы цепей ООС

На самом деле, значение ее коэффициента передачи не обязательно являются константой. Эта цепь может быть частотнозависимой, тогда величина β меняется с частотой. Такое свойственно современным усилителям сигналов, когда для постоянного тока стремятся получить стопроцентную обратную связь (β=1), дающую максимальную стабильность режима работы усилителя, а для переменного тока глубину ООС выбирают такой, чтобы Ku' для него (усиливаемого сигнала) был равен 10…1000 (β≈0,1…0,001). На самом деле при снижении частоты f ниже определенного значения, β начинает расти, доходя до единицы при f = 0, т.е. на постоянном токе. Но это все происходит ниже рабочего диапазона частот усилителя, поэтому в таких случаях глубину ООС принято оценивать двумя значениями: для постоянного тока, и для переменного тока (в рабочем диапазоне частот).

Если вернуться к формуле (5) для коэффициента усиления с замкнутой цепью ООС, то видно, что при достаточно большом значении петлевого усиления, свойства усилителя – это обратная величина от свойств цепи обратной связи. Такая ситуация лучше всего получается, если усилитель имеет очень большой коэффициент усиления без ООС – десятки-сотни тысяч и миллионы. Для работы в таких условиях созданы специальные микросхемы, называемые операционными усилителями (ОУ).

Схемы, реализующие данные АЧХ показаны на рис. 11.

 

Однако, конструируя схемы на операционных усилителях, следует помнить, что их огромный коэффициент усиления сохраняется только на очень низких частотах, а потом начинает падать со скоростью 20 дБ/декада. У большинства ОУ широкого применения спад АЧХ начинается с частоты порядка 10 Гц. Поэтому на частотах в десятки килогерц Ku может быть довольно мал, и при попытке получить на такой частоте большое усиление, глубина обратной связи (петлевое усиление) может оказаться слишком маленьким. При этом возрастет погрешность выполняемой функции, и повышаются нелинейные искажения. На рис. 12 показаны АЧХ усилителя (см. рис. 10 и рис. 11) без ООС и с ООС. На частотах 20 Гц, 1 кГц и 20 кГц глубина ООС (петлевое усиление) составляет 39 дБ, 24 дБ и 11 дБ соответственно. Вполне можно считать, что на частоте 20 кГц обратная связь имеет очень низкую глубину и практически не улучшает параметров усилителя.

 

 

 

Вывод

Для начала, хотелось бы отметить, что среди разработчиков усилителей возникло негласное правило - "обратная связь вылечит всё". Однако, такое правило справедливо только при идеальных условиях, т.е. при мгновенной реакции петли ООС на входной сигнал, что соответствует бесконечно большой полосе пропускания. Необходимо рассмотреть действие ООС на искажения различной природы, приводящие к появлению гармоник различных порядков с учётом их фазового сдвига () относительно входного напряжения (Uвх).

Таким образом в данной курсовой работе по исследованию условий устойчивой работы усилителей с отрицательной обратной связью, был проведён глубокий анализ, в следствии которого были описаны процессы протекающие внутри усилителей, так же была доказана полезность ООС в усилителях и рассмотрены самые разнообразные методы включения её в цепь.

Так же, хотелось бы отметить, что данная форма является не единственным, но наиболее универсальным способом описания процессов протекающих усилителях. Здесь не был учтен тот факт, что на переменном токе и коэффициенте усиления «реального» усилителя, и коэффициент передачи цепи обратной связи обычно величины комплексные (петлевое усиление также является комплексным), следовательно формула (4) верна только для модулей. В остальных случаях используется формула (9)

При этом цепь ООС может изменять не только амплитуду сигнала, но и его фазу. Причем, если сдвиг фаз в петле ООС станет равным 180 градусам, то сигнал обратной связи будет не вычитаться из сигнала источника, а прибавляться к нему, и обратная связь из отрицательной превратится в положительную.


ЛИТЕРАТУРА

 

 

1. Белов С.П., Храбростин Б.В., Прохоренко Е.И Основы теории цепей: Учебно-практическое пособие. ч. 2./ Белов С.П., Храбростин Б.В., Прохоренко Е.И. - Белгород, 2006.-162с

 

2. Бычков Ю.А., Основы теории электрических цепей: Учебник для студентов вузов/ В.М. Золотницкий, Э.П. Чернышев. - СПб.: Лань, 2002.-464с

 

3. В.П. Попов., Основы теории цепей. – М.: Высшая школа, 2005.

 

4. Фриск В.В., Основы теории цепей. / Учебное пособие. - М.: ИП РадиоСофт, 2002 -288с

 

5. Киреев В.А., Лахно В.И., Теория радиотехнических цепей и сигналов: Сборник задач. –Харьк. авиац. ин-т, 1998. – 172 с.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-07-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: