Типы физического выветривания, геологические результаты.




 

Температурное выветривание обусловлено нагревом поверхности г.п. солнечными лучами и суточными и сезонными колебаниями температуры. Нагревание приводит к расширению и увеличению, а охлаждение к сжатию и уменьшению объема породы. Попеременно возникающие при этом растягивающие и сжимающие напряжения ослабляют силу сцепления между минеральными зернами, приводят к образованию мелких трещин и дроблению пород на обломки разног размера. Происходит почти во всех климатических зонах. Наиболее интенсивно оно протекает в пустынях и высокогорных областях, развивается процесс дисквации или шелушения. Морозное выветривание механическое разрушение г.п. в результате воздействия периодически замерзающей в трещинах и порах воды. аиболее активно морозное выветривание развивается в полярных и субполярных районах и в горных областях выше снеговой линии.

Кристаллизация солей в капиллярных трещинах. Лучше всего это явление протекает в условиях сухого и жаркого климата. Днем при сильном нагревании г.п. влага по капиллярным трещинам подтягивается к поверхности и испаряется, а соли, содержащиеся в воде, кристаллизуются. Монолитность породы нарушается, и со временем порода распадается на обломки.

Корневая система и роющие животные оказывают механическое действие на г.п. При механическом разрушение особую роль играет трещиноватость.

Роль организмов в процессах выветривания, состав почвенного слоя. Важная роль при выветривании принадлежит микроорганизмам, повсеместно распространенным и обладающим огромной активностью. С микроорганизмами связаны новые стадии разрушения г.п. Они подготавливают необходимый субстрат.При этом намечается последовательность: первыми поселяются бактерии и сине -зеленые водоросли, за ними диатомовые водоросли и грибы, затем литосферные растения -лишайники и мхи. Все они подготавливают почву для появления высших растений и фауны. Механическое воздействие организмов проявляется в сверлении, росте корней растений, а также образовании подземных ходов и перемешивании разрыхленных выветренных масс. Корни растений, проникая в трещины г. п. и постепенно расширяя их при своем росте, способны разорвать и раздробить любые породы. Значительную роль в разрушении играют черви, муравьи, термиты, кроты, суслики. Они создают мелкие, но многочисленные ходы, способствуя проникновению вглубь атмосферного воздуха, что активизирует химическое выветривание пород.

Роль организмов в химическом выветривании определяется тем, что они способны захватывать различные хим. элементы из разрушаемой породы и выделяются в процессе жизнедеятельности различные химически активные кислоты и кислород. Растения проникая в трещины и поры г.п., разрушают их не только механически, но химически, разъедая кислотами, выделяемыми корневыми системами. Одновременно растение поглощает из г.п. необходимые для своей жизнедеятельности хим. элементы, такие как К, Са, 81, М§, Ыа, Р, А1, Ре. При отмирании растений органическая масса разлагается с образованием органических кислот и углекислого газа.

Почва - рыхлый поверхностный горизонт суши, способный производить урожай растений. Образуется в результате совокупного воздействия на г.п. воды, воздуха, солнечной энергии, растительных и животных организмов. Почва образуется главным образом из рыхлых пород-продуктов выветривания магматических, осадочных и метаморфических пород, оставшихся на месте их образования или перемещенных на то или другое расстояние. Почва состоит из рыхлого минерального вещества и органического вещества- гумуса, или перегноя, определяет плодородие почвы.

 

Главную роль в почвообразовании играет биологический фактор, в основном растения. Подавляющая часть живых организмов суши живет в почве. Среди них главное значение для образования почвы имеют высшие и низшие растения. Участие животных в процессе почвообразования заключается главным образом в том, что мелкие животные, живущие в почве, такие как дождевые черви, питаясь органическими остатками, способствуют их разложению и перемещению с минеральной частью почвы.

30. Геологическая деятельность подземных вод Находясь в земной коре в непрерывном движении, подземные воды производят геологическую работу, заключающуюся в разрушении гор­ных пород, переносе продуктов разрушения и образовании определен­ных типов отложений.

Первостепенную роль в геологической работе подземных вод играют разрушительные процессы, выражающиеся в их химическом и механическом воздействии на горные породы. Основным резуль-тагом разрушительной деятельности является образование карста и оползней.

Карстовые, процессы. Под карстом понимаются процессы растворе­ния п выщелачивания подземными (и поверхностными) водами ра­створимых трещиноватых горных пород, приводящие к образованию специфических форм рельефа на поверхности Земли и в глубине. Сло­во «карст» происходит от названия известкового плато на Адриатичес­ком побережье вблизи Триеста, где подобные процессы широко разви­ты и детально изучены.

Породами, обладающими достаточно хорошей растворимостью, яв­ляются галоидные (каменные и калийные соли), сульфатные (гипсы, ангидриты) и карбонатные (известняки и доломиты). В зависимостиот состава исходных пород различают карст соляной, сульфатный (гип­совый) и карбонатный (известковый). Наиболее часто встречается из­вестковый карст, что объясняется широкой распространенностью кар­бонатных пород. Природные воды, содержащие минеральные и газовые компоненты, обладают достаточной агрессивностью. Проникая по трещинам в гор­ные породы, они постепенно растворяют их, что в конечном итоге при­водит к формированию карстового ландшафта, наиболее отчетливо выраженного в Крыму (Крымские Яйлы), на Кавказе, Урале, Балканах, в пределах Карпат и Альп.Процесс растворения приводит к формированию многообразных карстовых форм, среди которых выделяют поверхностные и подземные.

Помимо карста, с разрушительной деятельностью подземных вод связано образование оползней.

Еще одним достаточно экзотическим видом геологической деятель­ности подземных вод является грязевой вулканизм — явление самопро­извольного периодического выброса из каналов газа, воды и грязи

В толщах горных пород и минералах вода содержится в различных формах:

Вода в форме пара. Этот вид воды присутствует в воздухе, заполняющем трещины и пустоты между частицами породы.

Вода в форме льда. Лёд в почвах и породах может присутствовать как в виде отдельных кристаллов, так и в форме скоплений льда (линз, прослоев). Наиболее широко эта форма нахождения воды распространена в области развития многолетней мерзлоты.

Кристаллизационная и конституционная вода. Эти виды вод являются составными частями минералов, входя в их состав в виде молекул или (OH)- -групп, то есть находятся в химически связанном состоянии.Кристаллизационная вода. Этот вид воды входит в состав минералов в виде молекул H2O в постоянном для каждого минерала количестве (например, гипс – CaSO4.2H2O, мирабилит – Na2SO4.10H2O).

Цеолитная вода. Цеолитная вода входит в состав минералов в виде молекул Н2О, число которых в составе минерала непостоянно и может меняться в широких пределах без нарушения физической однородности минерала. Этот вид воды характерен для минералов группы цеолитов, относящихся к каркасным алюмосиликатам. Их особенностью является наличие больших полостей (занимающих до 50% объема) в структуре каркаса, вмещающих катионы Ca2+, Na+, K+ и молекулы воды. В зависимости от условий (температуры, влажности) количество молекул воды в составе минерала изменяется.

Цеолитная вода часто рассматривается как разновидность кристаллизационной.

Конституционная вода. Присутствует в минералах не в молекулярной форме, а в форме гидроксильной группы (OH)-, занимающей определенную позицию в кристаллической решетке минерала. Этот вид воды может быть выделен только с полным разрушением структуры минерала.

Физически связанная вода. Этот вид воды присутствует на поверхности частиц. Разделяется на две разновидности.

Прочносвязанная (гигроскопическая). Образуется при адсорбции частицами молекул воды из паров. Гигроскопическая вода окутывает поверхность частиц сплошной или прерывистой плёночкой и очень прочно удерживаемой на них (под давлением до 10000 атм).

. Слабосвязанная (пленочная). Располагается поверх прочносвязанной, образуя на поверхности частиц «вторую плёнку». Сила связи между собственно пленочной водой и гигроскопической водой, окутывающей частицы пород, относительно слабая. В силу этого пленочная вода находится в жидком состоянии (обладая при этом повышенной вязкостью) и способна медленно передвигаться от частиц с большей толщиной плёнок к частицам с меньшей толщиной плёнок. Этот вид вод широко распространен в почвах.

Гигроскопическая, плёночная и гравитационная вода - частицы с неполной гигроскопичностью; б - частицы с полной гигроскопичностью; в, г - частицы с плёночной водой (вода движется от частицы с г к частице в); д - частицы с гравитационной водой

Свободная вода.

Капиллярная вода. Капиллярная вода располагается в тонких трещинах и порах пород идерживается в них силами поверхностного натяжения.

Гравитационная вода. К этому виду относятся воды, перемещающиеся (фильтрующиеся) под действием силы тяжести и напорного градиента в толще пород по сообщающимся порам и трещинам. Образование гравитационных вод происходит при насыщении всех пор и трещин породы водой.

Анализ приведённой выше классификации вод в горных породах позволяет выделять среди их две главные группы –связанные и подвижные (свободные) воды. Все природные воды, находящиеся ниже поверхности Земли в подвижном состоянии называются подземными водами.

31. Химический состав подземных вод Подземные воды представляют собой природные растворы, содержащие свыше 60 химических элементов, а также микроорганизмы. Сумма растворенных в воде веществ, исключая газы, определяет её минерализацию (выражаемую в г/л или мг/л).

 

По степени минерализации подземные воды подразделяют (по классификации В. И. Вернадского) на следующие группы:

пресные - воды с минерализацией до 1 г/л,

солоноватые - от 1 до 10 г/л,

солёные - от 10 до 50 г/л

подземные рассолы - более 50 г/л (в ряде классификаций принято значение 36 г/л, соответствующее средней солёности вод Мирового океана).

В основу классификации подземных вод по химическому составу положено соотношение наиболее распространенных в и их составе анионов (HCO-, SO42-, Cl-) и катионов (Ca2+, Mg2+, Na+). При описании химических типов вод сначала указывается анионный состав, при этом анионы указываются в порядке убывания; затем в аналогичном порядке приводится состав катионов.

Минерализация и химический состав подземных вод зависит от сочетания ряда факторов: происхождения вод, взаимодействия подземных вод с вмещающими породами, условий водообмена. Рассмотрим влияние этих факторов.

Происхождение вод. Инфильтрационные воды, образующиеся за счет поступления с поверхности, обычно имеют низкую минерализацию, по составу преимущественно гидрокарбонатные кальциевые и магниевые, обогащённые кислородом. Конденсационные воды пресные. Седиментационные воды, образованные за счёт захоронения древних вод морского происхождения, обычно наследуют особенности состава последних – они хлоридные натриевые или хлоридные кальциево-натриевые; захороненные воды ледниковых отложений ультрапресные. Состав эндогенных вод (и вод, развитых в зоне влияния потоков эндогенных флюидов) обладает большим разнообразием. Содержащиеся в их составе летучие компоненты (CO2, HCl, H2S и др.) придают им высокую агрессивность, способствующую выщелачиванию вмещающих пород и формированию сложного химического состава вод (например, известная группа Кавказских минеральных вод - «Ессентуки», «Новотерская» и др., связанных с областью внедрения неогеновых магматических пород).

Взаимодействие с вмещающими породами. Воды, фильтруясь через толщи пород, растворяют их, обогащаясь рядом элементов. Так при растворении соленосных толщ сложенных галитом (NaCl) воды приобретают хлоридный натриевый состав; при фильтрации через известняки - гидрокарбонатный кальциевый и т.д.

Условия водообмена определяют интенсивность участия подземных вод в гидрологическом цикле. В зоне интенсивного водообмена, где интенсивно протекают процессы круговорота вод («разбавление» вновь поступающими пресными инфильтрационными водами, разгрузка водоносных горизонтов родниками, относительно недолгое время взаимодействия с вмещающими породами) воды чаще гидрокарбонатные, богатые кислородом и азотом (газами воздушного происхождения), с низкой минерализацией. Зоне замедленного водообмена свойственны солоноватые воды многокомпонентного состава. Зона весьма замедленного водообмена, соответствующая нижней части артезианских бассейнов, представлена преимущественно солёными водами и рассолами (с минерализацией до 600 г/л), содержащим углеводородные газы и сероводород. В бассейнах Восточно-Европейской платформы мощность зоны пресных подземных вод варьирует от 25 до 350 м, солёных вод — от 50 до 600 м, рассолов — от 400 до 3000 м.

Температура подземных вод Грунтовые воды и неглубоко залегающие межпластовые воды испытывают сезонные колебания температуры.

К физическим свойствам подземных вод относятся: температура, прозрачность, цвет, запах, вкус, плотность, сжимаемость, вязкость, электропроводность и радиоактивность.

 

Температура подземных вод изменяется в широких пределах и зависит от физико-географических условий, геологического строения и режима их питания. Температура неглубоко залегающих подземных вод изменяется от 5 до 150 С. В области распространения многолетнемерзлых пород соленые воды, на отдельных участках, имеют отрицательную температуру порядка -50С и даже ниже. В областях молодой и современной тектонической деятельности, а также на участках выхода воды на поверхность из глубоких частей земной коры известны источники с температурой воды свыше 1000С.

 

Питьевая вода является наиболее вкусной и освежающей, если ее температура составляет 7-110С. Для лечебных целей (принятия ванн) наиболее ценной является вода с температурой 35-370С, т.е. близкой к температуре человеческого тела. Такая вода при употреблении не требует ни охлаждения, ни нагревания, поэтому широко используется на курортах.

 

Прозрачность подземных вод зависит от количества растворенных в них минеральных веществ, содержания механических примесей, коллоидов и органических веществ. Выделяют 4 категории прозрачности вод: прозрачные, слегка мутные, мутные, очень мутные.

 

Цвет подземных вод зависит от химического состава и наличия примесей. Большей частью подземные воды бесцветны. Жесткие воды имеют голубоватый оттенок. Закисные соли железа и сероводород придают воде зеленовато-голубую окраску. Органические гуминовые соединения придают воде желтоватый цвет, взвешенные минеральные частицы – сероватый.

 

Запах подземные воды имеют не всегда. Установлено, что запах воды чаще связан с деятельностью бактерий, разлагающих органические вещества. Интенсивность запаха оценивают по следующей шкале: 0 – запаха нет, 1 – очень слабый запах, 2 – слабый, 3 – заметный, 4 – отчетливый, 5 – очень сильный. Питьевая вода не должна иметь запаха.

 

Вода приобретает вкус при растворении в ней минеральных солей, газов, различных примесей. Различают горький, сладкий, соленый и кислый вкус. При содержании в воде гидрокарбонатов кальция и магния, а также углекислоты вода имеет приятный вкус. Большое количество органических веществ придает воде сладковатый вкус. Солоноватый вкус обусловлен растворением значительного количества хлористого натрия, а горький вкус – наличием в воде сульфатов магния и натрия. Ионы железа придают воде своеобразный ржавый вкус.

 

Плотность воды количественно определяется отношением ее массы к объему при определенной температуре. За единицу плотности воды принята плотность дистиллированной воды при температуре 40С. Плотность воды зависит от ее температуры, от количества растворенных в ней солей и газов и взвешенных частиц. Плотность подземных вод изменяется от 1,0 до 1,4 г/см3.

 

Сжимаемость показывает изменение объема воды под действием давления. Степень сжимаемости воды зависит от количества растворенного в ней газа, температуры и химического состава.

 

Вязкость характеризует внутреннее сопротивление частиц жидкости ее движению. Вязкость подземных вод в основном зависит от температуры и количества растворенных в ней солей. Причем, с увеличением температуры вязкость уменьшается, а с увеличением минерализации подземных вод вязкость повышается.

 

Электропроводность подземных вод зависит от ионно-солевого состава и оценивается величиной удельного электрического сопротивления. Диапазон изменения удельных сопротивлений подземных вод 0.2-1.0 Ом м.

 

Радиоактивность подземных вод вызывают наличием в них урана, радия и радона. За очень редким исключением, все подземные воды в той или иной степени радиоактивны. За основную единицу измерения количества радона принято кюри, под которой понимается количество радона, находящееся в радиоактивном равновесии с 1г радия. Так как эта единица очень велика, то чаще употребляют более мелкие: милликюри (1*10-3 кюри), микрокюри (1*10-6 кюри), эман (1*10-10 кюри).

32. Закон Дарси (линейный закон фильтрации) В 1856г. французским инженером Дарси был установлен основной закон фильтрации – закон Дарси или линейный закон фильтрации, устанавливающий линейную связь между потерей напора Н1-Н2 и объёмным расходом жидкости Q, текущей в трубке с площадью поперечного сечения F,заполненной пористой средой.

где с – коэффициент пропорциональности, называемый коэффициентом фильтрации и имеющий размерность скорости; – гидравлический напор при пренебрежении скоростным напором;р/ – пьезометрическая высота.

Коэффициент фильтрации «с» характеризует среду и жидкость одновременно. Этот коэффициент обычно используется в гидротехнических расчетах, где приходится иметь дело с одной жидкостью – водой. При наличии различных жидкостей, что чаще бывает в подземной гидромеханике, использовать его неудобно. Поэтому закон Дарси записывается обычно в несколько ином виде

Границы применимости закона Дарси. Закон Дарси справедлив при соблюдении следующих условий: скорость фильтрации и градиент давления малы;

b) изменение скорости фильтрации и градиента давления малы.

При повышении скорости движения жидкости закон Дарси нарушается из-за увеличения потерь давления на эффекты, связанные с инерционными силами: образование вихрей, зон срыва потока с поверхности частиц, гидравлический удар о частицы и т.д. Это так называемая верхняя граница. Закон Дарси может нарушаться и при очень малых скоростях фильтрации в процессе начала движения жидкости из-за проявления неньютоновских реологических свойств жидкости и её взаимодействия с твёрдым скелетом пористой среды. Это нижняя граница.

Верхняя граница. Критерием верхней границы справедливости закона Дарси обычно служит сопоставление числа Рейнольдса Re=wa/μ с его критическим значением Reкр, после которого линейная связь между потерей напора и расходом нарушается. В выражении для числа Re: w –характерная скорость течения: а – характерный геометрический размер пористой среды;  – плотность жидкости. Имеется ряд представлений чисел Рейнольдса, полученных различными авторами при том или ином обосновании характерных параметров. Скорость фильтрации uкр, при которой нарушается закон Дарси, называется критической скоростью фильтрации. Нарушение скорости фильтрации не означает перехода от ламинарного движения к турбулентному, а вызвано тем, что силы инерции, возникающие в жидкости за счёт извилистости каналов и изменения площади сечения, становятся при u>uкр соизмеримы с силами трения.

Нижняя граница. При очень малых скоростях с ростом градиента давления изменение скорости фильтрации не подчиняется закону Дарси. Данное явление объясняется тем, что при малых скоростях становится существенным силовое взаимодействие между твердым скелетом и жидкостью за счет образования аномальных, неньютоновских систем, например, устойчивые коллоидные растворы в виде студнеобразных плёнок, перекрывающих поры и разрушающихся при некотором градиенте давления н, называемого начальным и зависящим от доли глинистого материала и величины остаточной водонасыщенности. Имеется много реологических моделей неньютоновских жидкостей, наиболее простой из них является модель с предельным градиентом

Законы фильтрации при Re > Reкр. От точности используемого закона фильтрации зависит достоверность данных исследования скважин и определение параметров пласта. В связи с этим, в области нарушения действия закона Дарси необходимо введение нелинейных законов фильтрации. Данные законы могут быть: одночленными и двухчленными.

Границы применимости линейного закона фильтрации. Так же, как и в пористых средах, в трещинных породах линейный закон может нарушаться при больших скоростях фильтрации из-за появления значительных по величине сил инерции. При этом значения критических чисел Рейнольдса значительно зависят от шероховатости: для гладких трещин Reкр=500, а для шероховатых трещин – 0,4. Следует заметить, что если величина относительной шероховатости меньше 0.065, то её ролью в процессе фильтрации можно пренебречь.

 

33. 34.35. Химический состав подземных вод Подземная вода представляет собой очень сложную физико-химическую систему, меняющуюся в зависимости от состава, степени активности входящих в нее компонентов и термодинамических условий. Ионно-солевой комплекс подземных вод представлен микрокомпонентами, макрокомпонентами, радиоактивными элементами. Кроме того, почти в любой природной воде имеются органические вещества и микроорганизмы, растворенные в воде газ, а также коллоиды и механические примеси.Сложность состава подземных вод определяется не только присутствием в них большого числа химических элементов, но и разным количественным содержанием каждого из них, которое к тому же резко меняется в различных типах вод.

Общую минерализацию подземных вод составляет сумма растворенных в них веществ. Она обычно выражается в г/л или мг/л. Формирование химического состава и общей минерализации подземных вод связано с двумя основными факторами:

1) условиями их происхождения;

2) взаимодействием с горными породами, по которым движется подземная вода, и условиями водообмена.

В ряде случаев происходит процесс выщелачивания растворимых горных пород и соответственное обогащение подземных вод теми или иными минеральными солями. В глубинных водах (в погруженных частях структур) в условиях затрудненного водообмена происходят наибольшая концентрация растворенных веществ и значительное увеличение общей минерализации.

К настоящему времени опубликовано много классификаций подземных вод по их минерализации и химическому составу. В классификации В. И. Вернадского, О. А. Алексина и других выделяются четыре группы подземных вод:

1) пресные – с общей минерализацией до 1 г/л;

2) солоноватые – от 1 до 10 г/л;

3) соленые – от 10 до 50 г/л;

4) рассолы – свыше 50 г/л.

В классификации М. С. Гуревича и Н. И. Толстихина приводится более дробное разделение указанных групп исходя из учета потребностей и использования подземных вод для решения различных задач.

Отнесение к пресным водам обусловлено нормами ГОСТа. Слабосолоноватые воды могут использоваться для нецентрализованного водоснабжения, орошения; соленые - для оценки минеральных (лечебных) вод. Выделение подгрупп рассолов необходимо для правильной оценки термальных, промышленных подземных вод и вод нефтяных месторождений.Основной химический состав подземных вод определяется содержанием наиболее распространенных трех анионов – НСО3-, S042-, Сl- и трех катионов – Са2+, Mg2+, Na+. Соотношение указанных шести элементов определяет основные свойства подземных вод – щелочность, соленость и жесткость.

По анионам выделяют три типа воды:

1) гидрокарбонатные;

2) сульфатные;

3) хлоридные

ряд промежуточных – гидрокарбонатно-сульфатные, сульфатно-хлоридные, хлоридно-сульфатные и более сложного состава.

По соотношению c катионами они могут быть кальциевыми или магниевыми, или натриевыми, или смешанными кальциево-магниевыми, кальциево-магниево-натриевыми и др. При характеристике гидрохимических типов на первое место ставится преобладающий анион. Так, например, пресные воды в большинстве случаев гидрокарбонатно-кальциевые или гидрокарбонатно-кальциево-магниевые, а солоноватые – могут быть сульфатно-кальциево-магниевыми.

Источниками поступления хлор-иона в подземные воды являются: древние морские бассейны, в которых вместе с минеральными отложениями накапливались воды хлоридного натриевого состава; растворение каменной соли; поступление из атмосферы, особенно в засушливых районах и вблизи морей и океанов; продукты жизнедеятельности животного мира.

Сульфаты в подземных водах могут накапливаться в результате растворения гипсов и ангидритов, а также оки сления сернистых соединений и сульфидных минералов. Гидрокарбонатный ион поступает в подземные воды главным образом вследствие выщелачивания известняков, доломитов, мергелей. Источниками поступления натрия в подземные воды являются океанические и морские воды, процессы выветривания изверженных горных пород, растворение отложений каменной соли. Присутствие магний-иона в подземных водах в основном связано с поступлением его с морскими водами, из атмосферы, в результате разложения минералов, содержащих магний. Кальций в подземные воды поступает при выветривании изверженных горных пород и, особенно, в результате выщелачивания известняков, гипсов, доломитов, ангидритов.

Жесткость воды обусловливается наличием в воде ионов Са и Mg. Для вод, используемых в хозяйственных и технических целях, жесткость имеет большое значение: в жесткой воде медленнее развариваются овощи и мясо, она дает накипь в паровых котлах.

Микрокомпоненты – это химические элементы или соединения, содержащиеся в подземных водах в количестве менее 10 мг/л. Они не определяют химический тип воды, но оказывают значительное влияние на специфические особенности их состава.

Газы являются одной из ведущих составляющих подземной гидросферы. Различают сорбированные, растворенные и свободные газы. Содержание газа в воде определяется газонасыщенностью, под которой понимается объем газа, растворенный при 00 С и нормальном давлении в 1л воды.

По генезису газы в воде делятся на 4 основные группы:

1) газы атмосферного происхождения;

2) газы биохимического происхождения;

3) газы метаморфического и магматического происхождения;

4) газы радиоактивного происхождения.

36.Микрофлора и ее геохимическая роль. В.И. Вернадский называл ее «живым веществом». Она представляет собой мельчайшие растительные организмы – простейшие, водоросли, бактерии, дрожжи, плесени. Известно около 150 тыс. их различных видов. Бактериальные организмы имеют размер от десятых долей до нескольких микрон. Бактерии состоят на 75 – 85 % из воды, остальная часть – белки, углеводы, липиды (жиры) и нуклеиновые кислоты (РНК и ДНК). Их клетки содержат много органических соединений, легко доступных в общем обмене веществ – сахара, кислоты, аминокислоты, нуклеотиды, фосфорные эфиры, витамины и т.п.

Энергию бактерии получают в ходе окислительно-восстановительных реакций. По отношению к кислороду различают аэробные и анаэробные бактерии. Первые развиваются только при наличии свободного кислорода, а отдельные группы – связанного кислорода (например – NO3). Анаэробы живут при отсутствии, либо ограниченном доступе свободного кислорода. Они используют сульфаты, нитраты, углекислоту, органические вещества.

По характеру обмена бактерии подразделяют на авто- и гетеротрофные. Автотрофы используют для своего развития минеральные вещества. Углерод они получают из СО2, а водород – из воды, Н2S, NH3 или используют газообразный водород. Гетеротрофы нуждаются в готовых органических соединениях. Энергию на восстановление СО2 они получают от окисления органических веществ. К гетеротрофам относят большинство бактерий, обнаруженных в подземных водах.

До глубины 3 – 4 км количество бактерий колеблется от 10 тыс. до 500 тыс. клеток на 1 мл. воды. наиболее благоприятных условиях это число достигает нескольких миллионов клеток в 1 мл. Число живых клеток достигает 95 – 99 %. Основным фактором, влияющим на их развитие является температура. Верхним пределом, при которым может существовать жизнь бактерий считают 90 – 98 °C. Пониженные температуры (3 – 5 °С) затормаживают развитие бактерий. Их полное вымирание видимо происходит при температуре около минус 10 °С.

Бактерии, развивающиеся при температуре 20 – 40 °С называют мезофильными. Для термофильных бактерий оптимальные условия жизни – это температуры от 40 до 75 °С.

Окисление восстановительных соединений серы осуществляется тионовыми бактириями. Они представляют автоморфные микроорганизмы, использующие свободную углекислоту (СО2) на построение своего тела и получают энергию от окисления серы и ее восстановленных продуктов.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-11-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: