СЕВЕРНЫЙ ЛЕДОВИТЫЙ ОКЕАН




 

Если ледниковые периоды сопутствуют «Великим сезонам», то можно точно предсказать, когда начнется следующий ледниковый период. Он должен наступить через 50 000 лет.

Но не следует полагать, что причина ледникового периода в природе естественна. Может существовать не одна способствующая причина. Например, изменения орбиты и положения оси могут установить основной период, но другие факторы способны корректировать его. Изменение солнечной радиации, запыленности космоса между Солнцем и Землей или содержания углекислого газа в атмосфере могут по отдельности или вместе воздействовать на цикл, усиливая его в одних случаях и противодействуя в других.

Если два и более эффекта совпадают, ледниковый период может быть более суровым, чем обычно. Если орбитальным и осевым изменениям противодействует необычно ясный космос, необычно высокое содержание углекислого газа или необычно пятнистое Солнце, то ледниковый период может быть необычно мягким или вообще пропущен.

В настоящем случае мы имеем основания бояться самого худшего, поскольку через 50 000 лет мы не только достигнем Великой зимы, но мы также (как я говорил ранее в этой главе) можем войти в космическое облако, которое ослабит достигающую нас солнечную радиацию.

Однако мы тут совершенно отвлекаемся от главного. В конце концов, орбитально‑осевые колебания должны продолжаться с абсолютной регулярностью, поскольку Солнечная система существует в своей настоящей структуре. В течение всей жизни должны были быть и ледниковые периоды каждые сто тысяч лет.

И вдруг оказывается, что ледниковые периоды были присущи только последнему миллиону лет. До того, в течение примерно 250 миллионов лет, по‑видимому ледниковых периодов не было вообще. Не исключено даже, что существуют последовательные периоды ледниковых периодов, скажем, в несколько миллионов лет отделенные друг от друга интервалами в четверть миллиарда лет.

Но почему интервалы? Почему в течение этих длительных интервалов не было ледниковых периодов, хотя орбитально‑осевые колебания происходили и тогда точно так же, как они происходят сейчас? Причина может быть в конфигурации расположения суши и океанов на поверхности Земли.

Если бы полярный район состоял из обширного морского пространства, было бы несколько миллионов квадратных километров морского льда, не очень толстого, окружающего полюс. Морской лед был бы толще и более обширным зимой, тоньше и менее обширным летом.

В конце ледникового периода, обусловленного орбитально‑осевым колебанием, морской лед был бы в общем толще и более обширным зимой и летом, но не намного больше. В конце концов существуют океанские течения, которые постоянно приносят более теплую воду в высокие широты из умеренных и тропических регионов, и это создает тенденцию смягчать полярную погоду даже в течение ледникового периода.

С другой стороны, если бы полярный регион состоял из континента с полюсом более или менее в его центре и с несломанным льдом на море вокруг него, мы полагаем, что и континент был бы покрыт толстой шапкой льда, который бы не таял в течение очень прохладного лета и накапливался из года в год.

Но, конечно, лед бы не накапливался вечно, так как под влиянием значительного веса он течет, как доказал полтора века назад Агассиз. Лед постепенно стекает в окружающий океан, разламываясь на громадные айсберги. Айсберги вместе с морским льдом плавали бы вокруг полярного континента и, когда они дрейфовали бы в направлении более умеренных широт, постепенно бы таяли. В ледниковый период айсберги бы приумножались, в межледниковые периоды их количество бы уменьшалось, но изменение не было бы большим. Окружающий океан, благодаря океанским течениям, поддерживал бы свою температуру на уровне, очень близком к нормальному, будь то ледниковый период или нет.

Подобная ситуация существует на Земле, поскольку Антарктика покрыта толстой шапкой льда, и океан, окружающий ее, полон айсбергов. Антарктика, однако, имеет эту ледовую шапку приблизительно 20 миллионов лет, и едва ли на ней сказывалось наступление или отступление ледниковых периодов.

Предположим, однако, что у вас есть полярный океан, не очень обширный. Предположим, у вас маленький, почти замкнутый сушей океан, такой, как Северный Ледовитый. Северный Ледовитый океан не больше Антарктиды, и он почти весь окружен огромными континентальными массами Евразии и Северной Америки. Единственная значительная связь Северного Ледовитого океана с остальными водами мира — это пролив в 1600 километров шириной между Гренландией и Скандинавией, и даже тот частично блокируется островом Исландия.

Именно северные земли составляют все различие, тот дополнительный снег, который во время мягкой зимы, во время пуска механизма ледникового периода выпадает на сушу, а не в океан. В океане снег бы просто таял, потому что вода имеет большую теплоемкость и потому что, даже если скапливающийся снег и был бы способен понизить температуру океана до точки замерзания, водные течения из более теплых краев предотвращали бы это.

На суше, однако, положение снега лучше. Суша имеет более низкую теплоемкость, чем вода, так что она остывает гораздо быстрее под тем же количеством снега.

Более того, тут нет никаких течений, чтобы улучшить положение, так что земля как следует застывает. Затем если летом недостаточно тепла, чтобы растопить весь снег, снег превращается в лед и ледники начинают свой марш.

Наличие больших массивов суши, имеющихся вокруг Северного полюса, обеспечивает огромную площадь для снега и льда, а Северный Ледовитый океан (особенно до наступления ледникового периода, покроющего его морским льдом) является источником влаги. Распределение океана и континентов в северном полушарии как раз такое, чтобы максимально ужесточить ледниковый период.

Но распределение океана и континентов в северном полушарии не является постоянным. Оно меняется в результате тектонических подвижек.

Отсюда следует, что пока поверхность Земли распределяется таким образом, что полярные районы являются либо открытым океаном, либо изолированным континентом, окруженным океаном, — нет места ледниковым периодам. И только когда движущиеся плиты случайно создают такое распределение суши и океана, какое существует в северных полярных регионах сегодня, орбитально‑осевой цикл приносит тот тип ледниковых периодов, с которым мы знакомы. Это происходит только один раз за 250 миллионов лет.

Но мы существуем сегодня, и, несомненно, распределение континентов в течение последующего миллиона лет существенно не изменится, так что нас ожидает не один, а целый ряд ледниковых периодов.

 

 

ЭФФЕКТ ОЛЕДЕНЕНИЯ

 

Предположим, что ледниковый период уже наступил. Насколько это страшное бедствие? В конце концов, миллион лет ледники приходили и уходили, а мы вот продолжаем существовать. Пожалуй, забудем думать об этом, ведь ледники ползут очень медленно. Им требуются тысячи лет, чтобы продвинуться. И удивительно, насколько малые изменения претерпевают существенные части мира даже в стадии максимума оледенения.

В настоящее время существует 25 миллионов кубических километров льда, покоящегося на различных поверхностях суши, главным образом в Гренландии и в Антарктике. На вершине пика оледенения существовал чудовищный ледовый пласт, покрывавший северную половину Северной Америки, и меньшие ледовые пласты в Скандинавии и северной Сибири. В то время на суше находилось примерно 75 миллионов кубических километров льда. Это означает, что на верхнем пике оледенения 50 миллионов кубических километров воды, которые сейчас в океане, находились на суше.

Вода, вычтенная из океана, чтобы напитать ледники, составляла, однако, даже на верхнем пике оледенения всего 4 процента от ее общего количества. А это означает, что даже в то время 96 процентов воды находилось именно там, где находится сейчас.

Следовательно, с точки зрения пространства морская жизнь не ощущала заметного сужения среды обитания. Конечно, океанская вода в среднем была, наверное, несколько холоднее, чем сейчас, но что из того? Холодная вода растворяет больше кислорода, чем теплая, а морская жизнь в такой же степени зависит от кислорода, как и мы. Вот почему полярные воды намного богаче жизнью, чем тропические, и вот почему полярные воды могут поддерживать жизнь гигантских млекопитающих, которые питаются морской живностью, — таких, как большие киты, белые медведи, морские слоны и так далее.

Если в течение ледникового периода океанская вода была холоднее, чем сейчас, на самом деле это лишь подстегнуло жизнь. Может быть, как раз сейчас жизнь в море несколько ущемлена, а не тогда.

Иной была ситуация на суше, и может показаться ч она была бедственной. В настоящий момент 10 процентов суши покрыто льдом. На верхнем пике оледенени площадь оледенения была в три раза больше — 30 про центов нынешней поверхности Земли было покрыто льдом. Это означает, что площадь, предоставленная жизни на суше, была снижена примерно с 117 миллионов квадратных километров, свободных ото льда, по крайней мере летом, до не более чем 90 миллионов квадратных километров. И все же это не вполне верная картина того, что тогда могло быть фактически.

На верхнем пике оледенения потеря 4 процентов воды из океана означает падение уровня моря примерно на 150 метров. Это не изменило бы сильно сам океан, но вокруг континентов по краям океана находятся отмели с небольшими глубинами. Эти отмели с глубинами менее 180 метров называются континентальным шельфом». Когда уровень моря падает, континентальный шельф мало‑помалу появляется из воды и открывается для вторжения жизни с суши.

Другими словами, когда ледники продвигаются и покрывают сушу, уровень моря падает и открывает новую сушу. Эти явления могут в значительной степени уравновешиваться. Поскольку ледники движутся крайне медленно, растительность медленно продвигается впереди ледников на юг и на оголившиеся континентальные шельфы, животная жизнь, естественно, следует за растительной.

Когда продвигаются ледники, штормовые пояса также отступают в южном направлении, принося дожди в более теплые края Земли, которые не получали их раньше (и тех пор — тоже). Короче говоря, то, что сейчас — пустыня, не было пустыней в ледниковый период. До послед него отступления ледников нынешняя Сахара была плодородными луго‑пастбищными угодьями.

И общая площадь суши, открытой обильному насыщению различными видами жизни, как это ни парадокально была на пике ледникового периода больше, чем сейчас и этот парадокс мы аргументируем оголением континентальных шельфов и сокращением пустынь. Во время последнего ледникового периода люди — не наши человекообразные предки, а собственно Homo sapiens, процветали, они переселялись на юг по мере продвижения ледников, а по мере их отступления — на север.

Каким же будет грядущий ледниковый период? Предположим, ледники начнут свое новое наступление сейчас. Насколько это будет бедственно?

Конечно, человечество сейчас менее мобильно, чем было. В последний ледниковый период общая численность людей, была около 20 миллионов, сейчас на Земле 4 миллиарда (Сейчас, в 2000 году, более 6 миллиардов) человек, то есть в двести раз больше. 4 миллиардам человек перемещаться труднее, чем 20 миллионам.

Рассмотрим также изменения в стиле жизни. Во время последнего ледникового периода люди не были ни в коей мере привязаны к земле. Они были собирателями пищи и охотниками за пищей. Они следовали за растениями и животными, и все места были для них похожими, поскольку они могли найти фрукты, орехи, ягоды и дичь.

С тех пор люди научились быть фермерами и рудокопами. Фермы и шахты нельзя сдвинуть с места. Нельзя сдвинуть с места и многочисленные сооружения, которые воздвигли люди, города, туннели, мосты, дороги, линии электропередач и так далее. Ничего этого сдвинуть нельзя, это может быть только оставлено, и где‑нибудь еще возведено новое.

Тем не менее не забывайте, насколько медленно ледники надвигаются и отступают и насколько медленно в результате опускается и поднимается уровень моря. Будет масса времени для того, чтобы передвижение произошло без бедствий. Мы можем представить себе человечество, медленно продвигающимся на юг и на континентальные шельфы, затем вглубь суши, и опять на север, и так поочередно много раз в течение всего времени, пока продолжает существовать нынешняя конфигурация континентов вокруг Северного полюса. Это — как бы своего рода выдох в течение 50 000 лет, затем — как бы вдох за следующие 50 000 лет и так далее.

И это не будет равномерным движением, поскольку ледники наступают с интервалами частичного отступления и отступают с интервалами частичного наступления; а люди будут следовать этим нюансам наступления и отступления, ведь все они достаточно медленные.

Изменения в окружающей среде — это не обязательно только движение ледников. Пока что отступление ледников последнего ледникового периода не является абсолютным. Остается ледовая шапка Гренландии, нерастаявший остаток ледникового периода. Что если впереди «Великое лето», климат смягчится и растает лед на Северном полюсе и ледовая шапка Гренландии?

Ледовая шапка Гренландии содержит 2,6 миллиона кубических километров льда. Если и меньшие пласты льда на некоторых других полярных островах растают и вольются в океан, уровень моря поднимется примерно на 5,5 метра. Это, конечно, будет неприятностью для некоторых наших прибрежных районов и в особенности для низко расположенных городов; такие, например, как Новый Орлеан, будут просто затоплены (В России такая же участь постигла бы Санкт‑Петербург и многие другие прибрежные города). Опять же если таяние будет происходить достаточно медленно, и уровень моря соответственно подниматься, то можно представить себе прибрежные города, медленно оставляющие линию берега и безо всяких бедствий отступающие на более высокие места.

Предположим, что по каким‑то причинам слой льда Антарктики тоже растает. Это маловероятно по естественному ходу вещей, потому что этот лед пережил все межледниковые периоды прошлого, — но предположим! Поскольку 90 процентов льда на Земле располагается в Антарктике, то, если он растает, уровень моря поднимется в сумме с тем, что растаяло в Гренландии, в десять раз больше. Уровень моря поднимется примерно на 55 метров, и вода достигнет восемнадцатого этажа небоскребов Нью‑Йорка. Низко расположенные края нынешних континентов окажутся под водой. Штат Флорида и многие другие штаты залива исчезнут, также исчезнут Британские острова, Нидерланды, Северная Германия и так далее.

Однако климат Земли станет более равномерным и не будет ни полярных земель, ни пустынь. И опять же, территория, пригодная для обитания человечества, останется такой же большой, как и раньше, и, если изменение будет достаточно медленным, даже таяние льдов Антарктики не станет ужасным бедствием.

Однако, если наступление следующего ледникового периода или таяние льдов Антарктики отодвинется хотя бы на десять тысяч лет, ничего этого не случится. Передовая технология человечества вполне способна видоизменить пусковой механизм ледникового периода и сохранить средние температуры Земли на обычном Уровне, если это будет желательно.

Например, в ближнем космосе можно разместить зеркала (В феврале 1999 года американской ракетой было отправлено на орбиту космическое зеркало из пленки диаметром 25 метров. «Развернутом виде оно должно было давать отраженный свет сильнее света Луны в полнолуние. О результатах эксперимента нам неизвестно.), направленные таким образом, чтобы отражать солнечный свет, который минует Землю, и направлять его на ночную поверхность Земли или при необходимости отражать солнечный свет, который обычно падает на дневную поверхность Земли, не давая ему достичь земной поверхности. Таким способом Землю можно слегка нагревать, если угрожают ледники, или слегка охлаждать, если угрожает таяние льда (Сходные сооружения, если люди удосужатся взять на себя такой труд, могут послужить и для того, чтобы сохранить Землю обитаемой еще на несколько десятков тысяч лет после того, как постепенно разогревающееся Солнце может сделать ее необитаемой.).

Опять же, мы можем разработать методы влияния на концентрацию углекислого газа в атмосфере Земли и действовать с помощью этих методов таким образом, чтобы сохранять тепло, если будут угрожать ледники, и выпускать его с Земли, если будет угрожать таяние льда.

Наконец, когда все больше и больше населения Земли переберется в космические поселения, приход и уход ледников станут менее опасны для человечества в целом.

Короче: ледниковые периоды, как они возникали в прошлом, могут не быть катастрофическими в будущем, они могут даже не быть бедственными. Они могут и не возникнуть благодаря технологии человечества.

Но что если ледники подойдут неожиданно и с беспрецедентной скоростью, или если запас льда Земли неожиданно растает до того, как мы будем к этому готовы в технологическом плане?

Тогда нас может ожидать огромное бедствие или даже катастрофа, и существуют условия, при которых это могло бы произойти, о чем я расскажу ниже.

 

ПЕРЕМЕЩЕНИЕ МАГНЕТИЗМА

 

 

КОСМИЧЕСКИЕ ЛУЧИ

 

Различные катастрофы, которые происходили на Земле, будь то ледниковые периоды или землетрясения, никогда не были достаточно сильными, чтобы стереть с поверхности планеты жизнь, как предполагал Кювье и другие катастрофисты несколько веков назад, но все же бывало так, что жизнь несла значительный урон. По окончании Пермского периода, 225 миллионов лет назад, за сравнительно короткий период времени прекратили свое существование примерно 75 процентов семейств земноводных и 80 процентов семейств рептилий, которые проживали в Пермский период. Некоторые называют это «великим умиранием».

После того, по‑видимому, было еще шесть таких великих умираний. Время, наиболее часто обозначаемое этим выражением, относится к концу Мелового периода — это около 70 миллионов лет назад. В то время после процветания в течение почти 150 миллионов лет полностью вымерли динозавры. Также вымерли и другие рептилии, — ихтиозавры, плезиозавры и летающие птерозавры. Из беспозвоночных вымерли аммониты, которые были большой и процветающей группой. Собственно, тогда исчезло до 75 процентов животных, и, по‑видимому, за сравнительно короткое время.

Представляется вероятным, что такие великие умирания были результатом некоторого заметного и сравнительно неожиданного изменения в окружающей среде, но это было такое изменение, которое оставило в живых большое количество особей, насколько мы можем судить, едва затронутых этим изменением.

Особенно логично объяснение о мелководных морях, которые время от времени вторгались на континенты и время от времени исчезали. Вторжение может происходить, когда ледовая нагрузка на полярные земли особенно низка, а исчезновение может иметь место в период горообразования, когда средняя высота континентов над уровнем моря возрастает. Во всяком случае мелководные внутриконтинентальные моря предоставляют благоприятные условия для морских животных, а они в свою очередь представляют собой стабильный и богатый запас пищи для других животных, которые живут на берегах. Когда внутренние моря исчезают, то как сами морские животные, так и на земные животные, жизнь которых зависит от них, естественно, вымирают (Хорошо известные нам Аральское и Каспийское моря быстро «усыхают» на глазах у трех поколений. Возможно, они, как и ледники Гренландии, тоже являются остатками не до конца отступившего ледникового периода).

В пяти из семи случаев великих умираний за последнюю четверть миллиарда лет причиной, по‑видимому, было исчезновение морей. Это объяснение подтверждается также тем, что морские животные, по всей видимости, более подвержены великим умираниям, чем животные наземные, и что растительный мир, по‑видимому, едва ли вообще подвержен этим умираниям.

Усыхание морей, может быть, наиболее логичное и разумное объяснение проблемы (объяснение, не содержащее в себе никаких ужасов для людей, которые не живут во внутриконтинентальных морях, но живут в мире, где нет значительных внутриконтинентальных морей) среди многих других предположений, которые выдвигались для объяснения великих умираний. Одно из таких предположений, хотя и маловероятное, отличается своей драматичностью. Более того, оно приводит нас к новому типу катастроф, который мы еще не рассматривали и который может угрожать человечеству. Это предположение связано с радиацией из космоса, поступающей не от Солнца.

В первые годы двадцатого века была обнаружена радиация, причем даже более проникающая и энергетичная, чем чуть ранее открытая радиоактивность. В 1911 году австрийский физик Виктор Фрэнсис Гесс (1883‑1964), чтобы удостовериться, что эта проникающая радиация поступает от Земли, направил регистрирующие радиацию приборы на воздушных шарах на высоту 9 километров. Он ожидал, что уровень радиации там будет меньше, потому что отчасти ее должен был поглотить воздух между поверхностью земли и поднятыми на высоту приборами.

Оказалось наоборот, интенсивность проникающей радиации увеличилась с высотой настолько, что стало ясно: она поступает из внешней Вселенной, из космоса. С легкой руки американского физика Роберта Эндрюса Милликена (1863‑1953) этой радиации было дано название — «космические лучи». В 1930 году американский физик Артур Холли Комптон (1892‑1962) доказал, что космические лучи — это очень энергетичные положительно заряженные частицы. Тогда стало понятным, что является источником космических лучей.

Солнце и, предположительно, все звезды претерпевают процессы, которые достаточно энергетичны для того, чтобы выпрыснуть в пространство частицы. Эти частицы, большей частью, — атомные ядра. Поскольку Солнце в основном состоит из водорода — ядра водорода, которые представляют собой простые протоны, являются наиболее частыми среди этих частиц.

Эти энергетичные, то есть несущие энергию протоны и другие ядра идут от Солнца потоками во всех направлениях и представляют собой солнечный ветер, о котором я упоминал ранее.

Когда в Солнце происходят особенно мощные процессы, частицы выбрасываются с большей энергией. Когда на солнечной поверхности образуются большие «вспышки», в солнечный ветер включаются и очень энергетичные частицы, но в нем могут содержаться частицы и низких даже для космических лучей уровней энергии (о которых говорят, как о «мягких космических лучах»).

Другие звезды тоже посылают звездные ветры, и эти звезды, которые массивнее и горячее Солнца, посылают более энергетичные ветры, более богатые частицами с высоким уровнем энергии. В особенности это относится к сверхновым.

Частицы космических лучей, будучи электрически заряженными, искривляют свой путь при прохождении магнитного поля. Все звезды имеют магнитные поля, и Галактика в целом тоже. Частицы космических лучей следуют сложными искривленными путями, в процессе движения ускоряются магнитными полями, которые проходят, и в результате приобретают еще больше энергии.

В конечном счете все межзвездное пространство в пределах нашей Галактики насыщено частицами космических лучей, идущими во всех направлениях. Определенный, очень маленький их процент обязательно и по чистой случайности попадает на Землю и попадает со всех возможных направлений.

Тут у нас появляется новый тип вторжения из открытого космоса, который мы еще не рассматривали. Ранее я указывал, насколько невероятно, чтобы Солнечная система столкнулась с какой‑нибудь звездой или через нее прошли бы даже маленькие куски вещества, пришедшие из других планетарных систем. Упоминал я и о частицах пыли, и об атомах из межзвездных облаков.

Теперь нам предстоит рассмотреть вторжение из космоса, извне Солнечной системы, мельчайших материальных объектов — субатомных частиц. Их настолько много, они распределены по космосу настолько плотно и передвигаются со скоростью, настолько близкой к скорости света, что Земля подвергается ими постоянной бомбардировке.

Однако космические лучи не оставляют никаких меток на Земле, и мы не знаем об их появлении. Только ученые с их специальными приборами могут обнаруживать космические лучи, и то лишь в пределах жизни двух последних поколений.

Кроме того, космические лучи попадают на Землю в течение всей истории жизни на нашей планете, и, по‑видимому, Земля совсем не стала хуже от этого. Очевидно, и люди не страдали от этого в ходе всей истории. Поэтому может показаться, что мы имеем все основания исключить космические лучи как причину катастрофы, — и все же это не так.

 

 

ДНК И МУТАЦИИ

 

Всякая живая клетка является крошечной химической фабрикой. Свойства определенной клетки, ее форма, ее структура и ее способности зависят от определенной природы происходящих в ней химических изменений, от скорости, с которой каждое из них происходит, и способа, которым они между собой связаны. Подобные химические реакции происходят очень медленно, если вещества, составляющие клетки и участвующие в реакциях, просто смешаны вместе. Чтобы реакции шли быстро и равномерно (как, по наблюдениям, это и происходит, и как необходимо для того, чтобы клетка могла жить), эти реакции должны направляться определенного рода комплексами молекул, называемыми «ферментами».

Ферменты принадлежат к классу веществ, называемых «протеинами»‑. Протеины состоят из гигантских молекул, каждая из которых построена из цепей более мелких строительных блоков, называемых «аминокислотами». Эти аминокислоты выступают примерно в двадцати разновидностях и способны соединяться друг с другом в любом порядке.

Предположим, мы начнем с одной из этих двадцати аминокислот и каждую из них поставим с остальными во всех возможных сочетаниях. Общее количество сочетаний — около 50000000000000000000 (пятьдесят миллиардов миллиардов), и каждое отличается от другого расположением аминокислот, каждое представляет собой разные молекулы. Фактически молекулы ферментов состоят из сотни или более аминокислот, и число возможного комбинирования этих аминокислот неисчислимо велико. Однако определенная клетка будет содержать только определенное, ограниченное количество ферментов, и каждая молекула определенного фермента будет иметь конструкцию аминокислотной цепочки, составленную из аминокислот в одном особом порядке.

Определенный фермент построен так, что определенные молекулы будут присоединяться к поверхности фермента таким образом, что взаимодействие между ними — включая перенос атомов — сможет происходить очень быстро. После взаимодействия измененные молекулы не будут больше держаться на поверхности. Они уходят, а другие молекулы присоединяются и вступают в реакцию. Именно в результате наличия нескольких молекул определенного фермента большие количества молекул реагируют друг с другом. В отсутствие фермента они бы не реагировали вообще[8].

Что же из этого следует? А то, что форма, структура и свойства определенной клетки зависят от различной природы ферментов в этой клетке, от числа этих ферментов и способа, которым они производят свою работу. Свойства многоклеточного организма зависят от свойств клеток, которые его составляют, и от способа, которым взаимосвязаны отдельные клетки. В общем (конечно, это не так просто), все организмы, включая и человеческий, являются продуктом ферментов.

Но это представляется случайной зависимостью. Если конструкция фермента не имеет точного порядка аминокислот, он может оказаться неспособным исполнить свою работу. Поменяйте одну аминокислоту на Другую и фермент не послужит подходящим катализатором для реакции, которой он управляет.

Что же тогда образует ферменты так точно? Что следит за тем, чтобы устанавливался определенный порядок аминокислот для определенного фермента, и никакой другой? Существует ли в клетке какое‑нибудь ключевое вещество, которое, содержит, так сказать, «программу» всех ферментов в клетке, направляя таким образом их изготовление?

Если такое ключевое вещество существует, оно должно быть в хромосомах. Это маленькие объекты внутри центрального ядра клетки, и ведут они себя так, словно несут в себе программу.

В различных видах организмов хромосомы присутствуют в разных количествах. У человека, например, каждая клетка содержит двадцать три пары хромосом.

Каждый раз, когда делится клетка, каждая хромосома делится на две хромосомы, каждая — точная копия другой. В процессе деления клетки одна из точных копий каждой хромосомы идет в одну клетку, другая точная копия — в другую клетку. Таким образом, каждая дочерняя клетка получает по двадцать три пары хромосом, причем оба набора пар являются идентичными. Это и указывает на то, что хромосомы несут в себе программу структуры ферментов.

Все организмы, кроме наиболее примитивных, вырабатывают половые клетки, задача которых состоит в том, чтобы образовывать новые организмы более сложным способом, чем простое деление клетки. Таким образом мужчины (и самцы большинства животных) вырабатывают клетки спермы, а женщины производят яйцеклетки. Когда клетка спермы соединяется с яйцеклеткой, «оплодотворяет» ее, результирующая комбинация может претерпеть повторные деления, пока не образуется новый, отдельно живущий организм.

Как яйцеклетки, так и клетки спермы имеют только половину обычного количества хромосом. Все яйцеклетки и все клетки спермы получают только по одной хромосоме от каждой из двадцати трех пар. Когда они сочетаются, оплодотворенная яйцеклетка имеет опять двадцать три пары хромосом, но одну в каждой паре от матери, одну — от отца. Таким образом потомство наследует свойства равным образом от обоих своих родителей, и хромосомы ведут себя так, словно несут в себе программу для приготовления фермента.

Но какова химическая природа этой предполагаемой программы?

Со времени открытия хромосом в 1879 году немецким анатомом Вальтером Флеммингом (1843‑1905) имело место общее допущение, что программа, если она существует, это — протеин. Протеины, как известно, наиболее сложные вещества, существующие в тканях, а ферменты, как стало известно в 1926 году из работ американского биохимика Джеймса Батчелора Самнера (1887‑1925), собственно и есть протеины. Безусловно, именно протеин должен служить программой для конструирования других протеинов.

Однако в 1944 году канадский физик Освальд Теодор Авери (1877‑1955) доказал, что молекулой программы является совсем не протеин, а молекула другого типа, называемая «дезоксирибонуклеиновая кислота», или сокращенно ДНК.

Это было большим сюрпризом, потому что полагали, что ДНК является простой молекулой, такой, которая совсем не подходит для того, чтобы служить программой для сложных ферментов. Более пристальное изучение ДНК, однако, показало, что это на самом деле сложная молекула, более сложная, чем протеины.

Как и молекула протеина, молекула ДНК состоит из длинных цепей простых строительных блоков. Строительный блок здесь называется «нуклеотидом», и одна молекула ДНК может быть построена цепями из многих тысяч нуклеотидов. Нуклеотиды представлены четырьмя разновидностями (не двадцатью, как протеины), и эти четыре разновидности могут быть сцеплены вместе в каком угодно порядке.

Возьмем три нуклеотида. Тогда будет 64 различных «тринуклеотида». Если пронумеровать нуклеотиды: 1, 2, 3 и 4, — получим тринуклеотиды: 1‑1‑1, 1‑2‑3, 3‑4‑2, 4‑1‑4 и так далее, всего 64 различных комбинаций. Один или более из этих тринуклеотидов могут соответствовать определенной аминокислоте; некоторые могут обозначить «пунктуацию» — начало цепи аминокислот или ее окончание. Перевод тринуклеотидов молекулы ДНК в аминокислоты ферментной цепи называется «генетическим кодом».

Но это, просто заменяет одну проблему другой. Что позволяет клетке из неисчислимого количества молекул ДНК, которые могут существовать в принципе, строить определенную молекулу ДНК, которая приведет к построению молекулы определенного фермента?

В 1953 году американскому биохимику Джеймсу Дьюи Уотсону (р. 1928) и английскому биохимику Фрэнсису Г. К. Крику (р. 1916) удалось установить структуру молекулы ДНК. Она состояла из двух прядей, свитых в двойную спираль. (То есть каждая прядь имела форму винтовой лестницы, и обе пряди переплетались.) Каждая прядь в определенном смысле была противоположностью другой, так что они совершенно подходили друг к другу. В процессе деления клетки каждая молекула ДНК разматывалась на две отдельные пряди. Каждая прядь затем сама собой осуществляла построение второй пряди, которая совершенно ей подходила. Каждая прядь служила программой для своего нового партнера, и результат был таков, что там, где вначале существовала одна двойная спираль, образовывались две двойные спирали, каждая — точная копия другой. Процесс был назван «репликацией». Таким образом, раз существовала определенная молекула ДНК, она размножалась сама, точно сохраняя свою форму от клетки к дочерней клетке и от родителя к потомству.

Отсюда следует, что каждая клетка и, конечно, каждый организм, в том числе человеческий, имеет свою форму, свое строение, свою химию (до определенной степени даже свое поведение), в точности определяемые его ДНК. Оплодотворенная яйцеклетка одного вида организма не очень отличается от яйцеклетки организма другого вида, но молекулы ДНК в каждой существенно отличаются одна от другой. По этой причине человеческая оплодотворенная яйцеклетка будет развиваться в человеческое существо, а оплодотворенная яйцеклетка жирафа будет развиваться в жирафа, и никакая путаница тут невозможна.

Но так уж происходит, что передача молекул ДНК от клетки к дочерней клетке и от родителя к потомку не столь же совершенна, как все остальное. Опыт пастухов и фермеров говорит, что то и дело появляются животные или растения, которые далеко не во всем похожи на родительские организмы, В целом эти отличия невелики и иногда даже не особенно заметны. Иногда же отклонение настолько велико, что создает так называемую «разновидность» или «монстра». Научный термин для всех таких потомков с измененными характеристиками, экстремальными или незаметными — мутант, от латинского слова «мутация» — изменение.

Обычно ярко выраженные мутации вызывали тревогу и мутанты уничтожались. Однако в 1791 году массачусетский фермер по имени Сэт Райт взглянул на мутацию более практично. У него в отаре овец родился ягненок с ненормально короткими ногами, и практичному янки пришло в голову, что коротконогая овца не сможет убежать через низкую каменную ограду вокруг фермы. И с этого не совсем счастливого случая он принялся разводить коротконогих овец и помог людям вообще обратить внимание на мутацию. Однако только с 1900 года, с опубликования работ голландского ботаника Гуго Марие де Врие (1848‑1935) мутации стала изучать наука.

Собственно, когда мутации не были особенно сильно выражены, не пугали и не вызывали отвращения, пастухи и фермеры давно заведенным порядком использовали их преимущества. Путем отбора из каждого поколения животных, которые казались наиболее подходящими для использования человеком — коров, дающих много молока кур, несущих много яиц, овец, дающих много шерсти, и так далее, — развивались породы, качества которых сильно отличались от тех диких особей, которые были приручены первоначально.

Это результат отбора маленьких и не очень значительных мутаций, которые, однако, как коротконогие овцы Райта, передаются по наследству. Отбирая мутацию за мутацией и все в одном направлении, человек, со своей точки зрения, «улучшает» породу. Если вспомнить о множестве разновидностей собак и голубей, мы можем представить, насколько искусно умеем изменять и создавать породы, тщательно подбирая пары, сохраняя одних отпрысков и выбраковывая других.

То же самое и гораздо легче может быть проделано с растениями. Американский сад



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: