VI. ПРЕДВАРИТЕЛЬНАЯ ОЦЕНКА ЗАПАСОВ МЕСТОРОЖДЕНИЯ ПОДЗЕМНЫХ ВОД




4.1 Краткие сведения о месторождении подземных вод “Ростань”

На территории Борисоглебского района в период с 1964 по 1983 гг. проводились различные гидрогеологические изыскания источников водоснабжения и была выполнена групповая гидрогеологическая и инженерно-геологическая съемка масштаба 1:200 000. По результатам съемочных работ к востоку от г.Борисоглебска была откартирована неогеновая палеодолина, простирающаяся в субмеридиональном направлении и дана подробная характеристика всех водоносных горизонтов. При этом девонские горизонты были охарактеризованы как бесперспективные для хозпитьевого водоснабжения вследствие низкой водообильности и высокой минерализации воды.

Для водоснабжения г.Борисоглебска и мелких населенных пунктов используются только четвертичные, неогеновые и меловые водоносные горизонты. Они и рассматривались как целевые при проведении Воронежской ГГЭ в 1987-1990 гг. поисков и предварительной разведки дополнительных источников водоснабжения г. Борисоглебска. По результатам разведочных работ был выделен перспективный участок “Ростань”, расположенный в 15 км от водопотребителя, в пределах которого оценены эксплуатационные запасы подземных вод уваровско-тамбовского горизонта (по легенде 1978 г. – ламкинский подгоризонт – N12lm). Эксплуатационные запасы подземных вод уваровско-тамбовского горизонта составили 44 тыс. м3/сут, в том числе категории A+B - 6 тыс. м3/сут, C1 - 38 тыс. м3/сут. Девонские водоносные горизонты при этом детально не изучались. Лишь на последнем этапе предварительной разведки, при сооружении гидрогеологических кустов на целевой уваровско-тамбовский горизонт, было пробурено две разведочные скважины №№ 42р, 43р на нижележащий средне-верхнефаменский комплекс. Скважины были пробурены с целью оценки качества подземных вод девонских комплексов и возможности подтягивания минерализованных вод девона к водозабору. Результаты опробования средне-верхнефаменского водоносного комплекса показали его высокую водообильность в пределах переуглубленной части неогеновой палеодолины и тесную гидравлическую связь с вышезалегающим водоносным уваровско-тамбовским горизонтом. При этом минерализация вскрытых девонских вод не превысила 0,5 г/дм3.

Учитывая полученные результаты по водообильности девонских отложений, при составлении проекта на детальную разведку месторождения “Ростань”, кроме работ по переводу запасов из категории C1 в категории A+B, были предусмотрены работы по изучению средне-верхнефаменского горизонта. Эти работы предусматривали оценку изменения химического состава и фильтрационных свойств верхнедевонских известняков за пределами неогенового разреза. В процессе выполнения ТОО “Воронежгидросервис” по договору с ОКС администрации Борисоглебска бурения 5 разведочных скважин №№ 45-49 вкрест развития неогеновой палеодолины была подтверждена перспективность девонских отложений как источника централизованного хозпитьевого водоснабжения. Из-за прекращения финансирования проведение детальной разведки было остановлено и объем выполненных работ ограничился бурением и опробованием пяти вышеупомянутых скважин.

В соответствии с «Программой геологоразведочных работ на территории Воронежской области на 1999 г.», ГГП «Воронежгеология» в марте 1999 г. приступило к составлению ПСД на детальную разведку месторождения «Ростань». По предложению ГГП «Воронежгеология» проведение работ на участко «Ростань» было разбито на два этапа: на первом этапе изучается средне-верхнефаменский комплекс, на втором - уваровско-тамбовскийкомплекс (см. рис. 2).

Первый этап работ разбит на 2 очереди: I очередь - оценка прогнозных запасов водоносного средне-верхнефаменского терригенно-карбонатного комплекса, II очередь - оценка эксплуатационных запасов этого комплекса. При получении положительных результатов по работам первой очереди, при отрицательных - работы второго этапа.

К настоящему времени выполнены работы I очереди первого этапа, начаты работы второй

очереди (2005 год), которые замедлились вследствие недостатка финансирования.

 

 

4.2 Схема размещения скважин

Рис. 2

Как следует из схемы (на рис.2), проектный водозабор состоит из 14 скважин, располагающихся на расстоянии 300-400 м друг от друга. Общая протяженность ряда скважин проектируется в пределах 5 км с севера на юг (почти в меридианальном направлении). Суммарный дебит скважин составит порядка 44000 м3/сут.

4.3 Характеристика качества подземных вод

По химическому составу воды средне-верхнефаменского водоносного горизонта в пределах переуглубленной части палеодолины гидрокарбонатные магниево-кальциевые с минерализацией 0,4-0,5 г/дм3. По качеству воды и в бортовых, и в центральной частях палеодолины отвечают требованиям СанПиНа. Наиболее новая информация о химическом составе вод представлена в анализах на основе проб скважины 56 р.э. (таблицы 1 и 2).

 

 

Таблица №1. Результаты полного химического анализа воды из скважины 56 р.э. Формула химического состава
Карбонат-ион <0.6
Гидрокарбонат-ион 323.0
Нитриты <0.003
Нитраты <0.1
Сульфаты 34.0
Хлориды 9.0
Железо 0.2
Магний 16.0
Кальций 75.0
Аммимак <0.05
Калий 2.0
Натрий 19.0
Сухой остаток (вычисл.) 323.0
Общая минерализация 484.0
Кремниевая кислота 6.20
Окисляемость пермангантная 0.08
Жесткость некарбонатная  
Жесткость карбонатная (мг-экв/дм3) 5.06
Жесткость общая (мг-экв/дм3) 5.06
Водородный показатель 7.31
Цветность, градус 10.0
Мутность 5.9
Вкус и привкус, балл  
Запах, балл 1.0 земл.
Глубина залегания водоносного горизонта до 160,3
от 131,8
Индекс водоносного горизонта D3fm2-3
№ скважины 56 р.э.
№ п/п  

 

Таблица №2. Результаты определения микрокомпонентов в пробах воды из скважины 56 р.э. Полифосфаты <0,01
Фенолы <0,0005
Нефтепродукты <0,02
Cпав <0,015
Cd <0,0008
Hg <0,0003
Co <0,025
Ni <0,005
Ba <0,05
B <0,05
Cr <0,01
Br <0,005
I <0,02
Pb <0,003
Mo <0,0003
F 0,31
Cu 0,02
Mn 0,11
Zn 0,01
Al <0.02
Глубина залегания водоносного горизонта до 160,3
от 131,8
Индекс водоносного горизонта D3fm2-3
№ скважины 56 р.э.
№ п/п  

 

4.4 Схематизация гидрогеологических условий района

Участок «Ростань» расположен на водоразделе р.р.Хопер и Ворона, являющихся естественными дренами. Предыдущими исследованиями установлена тесная взаимосвязь между всеми гидрогеологическими подразделениями, развитыми в районе работ и единство режимообразующих факторов. Формирование эксплуатационных режимов средне-верхнефаменского водоносного комплекса будет происходить преимущественно за счет перетока из вышележащего уваровско-тамбовского горизонта, который в свою очередь, взаимосвязан с белогорским и четвертичными горизонтами и комплексами. Разгрузка последних осуществляется в долины рек.

В связи с вышеизложенным, внешние границы модели на западе, юге и востоке ограничены естественными дренами - нижнее течение р.Ворона - р.Хопер - которые в модели реализованы как граничные условия III рода (H/Q связанные функциональной зависимостью) (рис. 3).

 

Рис. 3

Северная граница модели была удалена за пределы возможной области развития депрессионной воронки в питающем уваровско-тамбовском горизонте и реализована граничные условия II рода (Q=const=0).

Разработка модели осуществлялась на планшете масштаба 1:50000. Площадь моделирования была разбита на блоки имеющие размеры от 350м • 350м до 1850м •1500м.

Минимальные размеры блоков модели приурочены к району проектируемого водозабора

и обусловлены необходимостью реализации в модели проектных эксплуатационных скважин. Максимальные размеры блоков - к краевым частям модели (в связи с этим здесь отмечаются отклонения модельного и фактического положения русел моделируемых поверхностных водотоков). Всего было задано 37 блоков по оси J (строки) и

35 блоков по оси I (столбцы). Общее количество блоков расчетной модели составило 1295. Общая площадь моделирования составила 41,2x30,9 км=1273км2.

Фильтрационные свойства гидрогеологических подразделений развитых в районе изучены в незначительном объеме и приурочены в основном к первым от поверхности горизонтам и к краевым частям модели. В связи с этим выделение зон с различными коэффициентами фильтрации выполнено на основе общегеологических условий развития тех или иных отложений с учетом имеющихся результатов определения Кф по одиночным и кустовым откачкам.

При разработке математической модели в разрезе было выделено 4-е основных водоносных комплекса:

- в первый комплекс включены все водоносные и водоупорные отложения четвертичного, неогенового и мелового возрастов, залегающие выше аптекою водоупора;

второй комплекс модели представлен глинами аптского возраста;

- третий комплекс представлен валанжинскими песчано-глинистыми отложениями; четвертый комплекс модели - известняками вернедевонского возраста.

С целью реализации в модели ламкинского водоупора, в составе первого комплекса

выделено три слоя. Таким образом, в вертикальном разрезе моделируемой территории

выделено - 6слоев:

1 слой (Q + N2bg) состоящий из гидравлически взаимосвязанных между собой и поверхностными водотоками гидрогеологических подразделений:

- современный аллювиальный горизонт;

- верхнечетвертичный аллювиальный горизонт; - нижнечетвертичный (южно-воронежский) аллювиальный горизонт; - белогорский терригенный горизонт.

Данный слой развит по всей моделируемой территории. Плановая неоднородность фильтрационных свойств первого слоя отражена в выделении 5 зон с коэффициентами фильтрации от 1 до 30 м/сут. Максимальные значения Кф приурочены к верхнечетвертичным аллювиальным отложениям, минимальные - к области развития южно-воронежского горизонта.

2 слой (N1lm) представлен глинами тамбовского возраста имеющими повсеместное распространение в центральной части модели. В пределах развития данного водоупора выделено две зоны с Кф - 0,1 и 0,5м/сут, которые отражают фациальную изменчивость отложений. Минимальное значение Кф приурочено к центральной части области развития тамбовских глин, максимальное - к южной и северной частям, где глины залегают в виде маломощных прослоев в толще песков.

3 слой (n1+k1а) включает в себя водоносные уваровско-тамбовский терригенный горизонт. Плановая фациальная неоднородность отложений реализована в выделении 5-ти зон с Кф от 5 до 40м/сут. Максимальные Кф приурочены к области развития переуглубленной части неогеновой палеодолины. По мере уменьшения мощности неогеновых отложений и, соответственно, увеличения мощности отложений апта альба, уменьшался и Кф. Первые три слоя модели объединены в единый комплекс и имеют общий статический уровень.

4слой модели (K1a) представлен водоупорными глинами аптского возраста, распространенными практически по всей области моделирования, за исключением переуглубленной части неогеновой палеодолины (m=0м). По всей области развития аптского водоупора задан Кф = 0,01 м/сут.

5слой модели ( K1v) представлен песчано-глинистыми отложениями валанжинского яруса. Данный слой развит на всей площади моделирования, минимальная мощность его отмечается в пределах переуглубленной части неогеновой палеодолины. В плане было выделено 4 зоны с коэффициентами фильтрации от 15 до 0,5м/сут. Максимальное значение КФ= 15м/сут приурочено к участку разведки «Махровский». Минимальное значение приурочено к восточной части территории, к области погружения кровли девонских известняков, где происходит увеличение мощности валанжинских глин.

6слой модели ( D3) - представлен известняками целевого средне-верхнефаменского водоносного комплекса и развит по всей области моделирования. Вскрытая мощность отложений достигает 30м, однако результаты резистивиметрии показали, что мощность зоны наиболее активной трещиноватости не превышает 15 м и приурочена она к верхней части разреза. В связи с этим, мощность шестого слоя модели по всей территории была задана равной 15 м. Плановая фильтрационная неоднородность этого слоя была реализована в отношении нескольких зон с коэффициентами фильтрации от 0,1 до 75м/сут. Максимальные значения приурочены к переуглубленной части палеодолины.

 

4.5 Расчет эксплуатационных запасов месторождения подземных вод “Ростань”

Учитывая сложные геолого-гидрогеологические условия участка работ, в ФГУП «Воронежгеология» прогнозная оценка эксплуатационных запасов месторождения “Ростань” была подсчитана методами математического моделирования. При разработке математической модели в разрезе выделялось четыре основных водоносных горизонта, причем с целью реализации ламкинского водоупора, в составе первого комплекса было выделено три слоя. Таким образом, в вертикальном разрезе моделируемой территории выделено 6 слоев.

Проведённые расчёты подтвердили возможность отбора 44000м3/сут воды на участке «Ростань» из средне-верхнефаменского терригенно-карбонатного комплекса верхнего девона. Максимальное расчетное понижение по намечаемому к эксплуатации комплексу составляет 25,4м, по питающему - 23,7м (при допустимом понижении для питающего пласта - 42,9м). Ущерб поверхностному стоку p.p. Хопёр и Ворона не превысит 1,5% от минимального меженного их расхода Разработанная геофильтрационная модель района работ обладает достаточно большим запасом прочности, так как при решении прогнозных задач задано низкое значение гравитационной водоотдачи для первого модельного комплекса и не учитывается приток подземных вод поступающий с северо-восточной границы района.

В силу сложности характера вычислений с использованием специализированных программных средств, автору данной курсовой работы не было возможности проверить точность результатов. Был выбран косвенный метод прогнозной оценки эксплуатационных запасов месторождения: путем пересчетов на основе более простой модели работы водозабора, абстрагируясь от тесной связи с уваровско-тамбовским водоносным комплексом, наличия напора в средне-верхнефаменском водоносном горизонте, а также различного дебита каждой из 14-ти скважин проектного водозабора. Во внимание принимались только основные гидродинамические параметры.

Расчетные данные:

H = 30 м (мощность безнапорного пласта);

K = 75 м/сут (коэффициент фильтрации);

Т = 957 м2/сут (коэффициент водопроводности);

ay = 1,8*104 м2/сут (коэффициент уровнепроводности);

n = 14 скважин (количество скважин в ряду);

2σ = 461 м (ср. расстояние между скважинами);

длина линейного ряда = 5950 м.

Допустимое понижение Sдоп=15 м.

Расчет производится по формуле:

, где:

Qсум. – суммарный расход всех взаимодействующих скважин водозабора м3/сут.

Q0 – дебит наиболее нагруженной скважины, работающей в центре водозабора, для которой определяется понижение уровня, м3/сут.

Q1 …. Qn – дебиты скважин, вызывающих срезки, расположенных на расстоянии r1 …. Rn

Rn – приведенный радиус водозабора, определенный по формуле Rn=1,5 , где t – расчетный срок эксплуатации водозабора = 10000 сут.

Qсум принимаем равным 44000 м3/сут (заявленная потребность), тогда Q1 … Q2 == 3143 м3/сут.

r0 = 0,2 м (скв. №7 – 56 р.э.);

r1 = 337,5 м (скв. №8 – проектная);

r2 = 675 м (скв. №9 – проектная);

r3 = 1012,5 м (скв. №10 –проектная);

r4 = 1350 м (скв. №11 – 55 р.э.);

r5 = 2130 м (скв. №12 – проектная);

r6 = 2910 м (скв. № 13 – проектная);

r7 = 3700 м (скв. № 14 – 51 р.э.);

r8 = 375 м (скв. № 6 – проектная);

r9 = 750 м (скв. №5 - проектная);

r10 = 1125 м (скв. № 4 – проектная);

r11 = 1500 м (скв. №3 – 57 р.э.);

r12 = 1875 м (скв. №2 –проектная);

r13 = 2250 м (скв. №1 – проектная).

Тогда:

= 30 – 16 =14 м.

Таким образом, было получено понижение, не превышающее допустимого.

 

Заключение

В результате произведенных исследований было установлено:

1. По качественным характеристикам воды средне-верхнефаменского водоносного комплекса удовлетворяют требованиям СаНПиН.

2. Количественные характеристики данного комплекса изучались с использованием схемы будущего водозабора из 14-ти скважин с совокупным дебитом 44000 м3/сут двумя методами: моделированием в программном комплексе MCG (создан в МГУ, кафедра гидрогеологии) и относительно простым схематичным методом оценки расчета водозаборных сооружений в однородном неограниченном пласте при постоянном дебите скважин. В первом случае, максимальное понижение составило 23 м при допустимых 42, во втором – 14 м при допустимых 15-ти.

Учитывая несовершенство любой математической модели вследствие невозможности учесть все факторы, определяющие гидродинамику, задача подтверждения одних расчетов другими изначально не ставилась. Целью расчетов было показать, что максимальное понижение центральной скважины водозабора в обоих случаях окажется меньше допустимого, то есть водозабор с его экономико-технологическими характеристиками сможет без проблем функционировать заданное расчетами время (10000 суток). А, следовательно:

3. задача хозпитьевого водоснабжения г. Борисоглебска с потребностью 52000 м3/сут может быть решена в соответствии с планом за счет использования ресурсов месторождения «Ростань» (44000 м3/сут). Оставшиеся потребности могут быть удовлетворены водами неогеновых и четвертичных водоносных комплексов городского водозабора «Чигорак».

 

ЛИТЕРАТУРА

А. Опубликованная:

1. Боревский Б.В., Дробноход Н.И., Язвин Л.С. “Оценка запасов подземных вод”, Киев, Выща школа, 1989 г. – 407 с.

2. Климентов П.П., Кононов В.М. “Методика гидрогеологических исследований”, Москва, Высшая школа, 1989 г. – 448 с.

3. Мироненко В.А. “Динамика подземных вод”, Москва, Недра, 1983 г. – 357 с.

4. Плотников Н.И. “Поиски и разведка пресных подземных вод”, Москва, Недра, 1985 г. – 370 с.

5. Жернов И.Е. “Динамика подземных вод”, Киев, Вища школа, 1982 г. – 324 с.

Б. Фондовая:

6. Заключение о результатах работ первой очереди I этапа по объекту «Изыскание дополнительных источников водоснабжения г. Борисоглебска Воронежской области на участке «Ростань»», г. Воронеж, 2001 г.

 

 

ГРАФИЧЕСКИЕ ПРИЛОЖЕНИЯ:

1. Гидрогеологическая карта масштаба 1:50000, совмещенная с картой фактического материала;

2. Гидрогеологические разрезы по линиям I-I, II-II;

3. График колебания дебита и динамического уровня в скважине 56 р.э. и др. данные по скважине;

4. Иллюстрированное приложение работ на участке месторождения “Ростань”;

5. Моделирование работы проектного водозабора, использующего ресурсы средне-верхнефаменского водоносного комплекса;

6. Геологическая карта района работ масштаба 1:200000 с разрезом.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-04-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: