Расчет 3-й зубчатой цилиндрической передачи




Так как в задании нет особых требований в отношении габаритов передачи, выбираем материалы со средними механическими характеристиками (см. табл. 2.1-2.3[1]):

- для шестерни: сталь: 45

термическая обработка: улучшение

твердость: HB 230

- для колеса: сталь: 45

термическая обработка: улучшение

твердость: HB 210

Допустимые контактные напряжения (стр. 13[2]), будут:

[]H = H lim x ZN x ZR x Zv SH,

По таблицам 2.1 и 2.2 гл. 2[2] имеем для сталей с твердостью поверхностей зубьев менее HB 350:

H lim b = 2 x HB + 7.

H lim(шестерня) = 2 x 23, + 7 = 53, МПа;

H lim(колесо) = 2 x 21, + 7 = 49, МПа;

SH - коэффициент безопасности SH = 2,2; ZN - коэффициент долговечности, учитывающий влияние ресурса.

ZN = (NHG / NHE)1/6,

где NHG - число циклов, соответствующее перелому кривой усталости, определяется по средней твёрдости поверхности зубьев:

NHG = 30 x HBср2.4 <= 12 x 107

NHG(шест.) = 30 x 230,02.4 = 13972305,126

NHG(кол.) = 30 x 210,02.4 = 11231753,462

NHE = H x Nк - эквивалентное число циклов.

Nк = 60 x n x c x t

Здесь:

- n - частота вращения, об./мин.; nшест. = 159,168 об./мин.; nкол. = 71,057 об./мин.

- c = 1 - число колёс, находящихся в зацеплении;

t = 365 x Lг x C x tc - пордолжительность работы передачи в расчётный срок службы, ч.

- Lг=5,0 г. - срок службы передачи;

- С=2 - количество смен;

- tc=8,0 ч. - продолжительность смены.

t = 365 x 5, x 2 x 8, = 292, ч.

H =,18 - коэффициент эквивалентности по табл. 2.4[2] для среднего номинального режима нагрузки (работа большую часть времени со средними нагрузками).Тогда:

Nк(шест.) = 60 x 159,168 x 1 x 29200,0 = 278862336,0

Nк(кол.) = 60 x 71,057 x 1 x 29200,0 = 124491864,0

NHE(шест.) = 0,18 x 278862336,0 = 50195220,48

NHE(кол.) = 0,18 x 124491864,0 = 22408535,52

В итоге получаем:

ZN(шест.) = (13972305,126 / 50195220,48)1/6 = 0,808

Так как ZN(шест.)<1.0, то принимаем ZN(шест.) = 1,0

ZN(кол.) = (11231753,462 / 22408535,52)1/6 = 0,891

Так как ZN(кол.)<1.0, то принимаем ZN(кол.) = 1,0

ZR = 0,9 - коэффициент, учитывающий влияние шероховатости сопряжённых поверхностей зубьев.

Zv - коэффициент, учитывающий влияние окружной скорости: Zv = 1...1.15

Предварительное значение межосевого расстояния:

a' = K x (U + 1) x (Tшест. U)13

где К - коэффициент поверхностной твёрдости зубьев, для данных сталей К=10, тогда:

a' = 1 x (2,24 + 1) x (372,93 2,24)13 = 178,24 мм.

Окружная скорость Vпредв.:

Vпредв. = 2 x  x a' x nшест. (6 x 14 x (U + 1)) =

2 x 3.142 x 178,24 x 159,168 / (6 x 104 x (2,24 + 1)) = 0,917 м/с

По найденной скорости получим Zv:

Zv = 0.85 x V0.1 = 0.85 x 0,9170.1 = 0,843

Допустимые контактные напряжения:

для шестерни []H1 = 53, x 1, x,9 x 1, 2,2 = 216,818 МПа;

для колеса []H2 = 49, x 1, x,9 x 1, 2,2 = 2,455 МПа;

Для прямозубых колес за расчетное напряжение принимается минимальное допустимое контактное напряжение шестерни или колеса.

Тогда расчетное допускаемое контактное напряжение будет:

[]H = []H2 = 2,455 МПа.

Требуемое условие выполнено:

[]H = 2,455МПа < 1.25 x []H2 = 1.25 x 2,455 = 25,568

Допустимые напряжения изгиба (стр. 15[2]), будут:

[]F = F lim x YN x YR x YA SF,

По таблицам 2.1 и 2.2 гл. 2[2] имеем

F lim(шестерня) = 414, МПа;

F lim(колесо) = 378, МПа;

SF - коэффициент безопасности SF = 1,7; YN - коэффициент долговечности, учитывающий влияние ресурса.

YN = (NFG / NFE)1/6,

где NFG - число циклов, соответствующее перелому кривой усталости:

NFG = 4 x 106

NFE = F x Nк - эквивалентное число циклов.

Nк = 60 x n x c x t

Здесь:

- n - частота вращения, об./мин.; nшест. = 159,168 об./мин.; nкол. = 71,057 об./мин.

- c = 1 - число колёс, находящихся в зацеплении;

t = 365 x Lг x C x tc - пордолжительность работы передачи в расчётный срок службы, ч.

- Lг=5,0 г. - срок службы передачи;

- С=2 - количество смен;

- tc=8,0 ч. - продолжительность смены.

t = 365 x 5, x 2 x 8, = 292, ч.

F =,65 - коэффициент эквивалентности по табл. 2.4[2] для среднего номинального режима нагрузки (работа большую часть времени со средними нагрузками).Тогда:

Nк(шест.) = 60 x 159,168 x 1 x 29200,0 = 278862336,0

Nк(кол.) = 60 x 71,057 x 1 x 29200,0 = 124491864,0

NFE(шест.) = 0,065 x 278862336,0 = 18126051,84

NFE(кол.) = 0,065 x 124491864,0 = 8091971,16

В итоге получаем:

YN(шест.) = (4 x 106 / 18126051,84)1/6 = 0,777

Так как YN(шест.)<1.0, то принимаем YN(шест.) = 1,0

YN(кол.) = (4 x 106 / 8091971,16)1/6 = 0,889

Так как YN(кол.)<1.0, то принимаем YN(кол.) = 1,0

YR = 1,0 - коэффициент, учитывающий влияние шероховатости, переходной поверхности между зубьями.

YA - коэффициент, учитывающий влияние двустороннего приложения нагрузки (реверса). При реверсивной нагрузке для материала шестерни YA1 = 0,65. Для материала шестерни YA2 = 0,65 (стр. 16[2]).

Допустимые напряжения изгиба:

для шестерни []F1 = 414, x 1, x 1, x,65 1,7 = 158,294 МПа;

для колеса []F2 = 378, x 1, x 1, x,65 1,7 = 144,529 МПа;

По таблице 2.5[2] выбираем 9-ю степень точности.

Уточняем предварительно найденное значение межосевого расстояния по формуле (стр. 18[2]):

a = K x a x (U + 1) x (KH x Tшест. (ba x U x []2H))13,

где Кa = 450 - для прямозубой передачи, для несимметрично расположенной цилиндрической передачи выбираем ba =,315; KH - коэффициент нагрузки в расчётах на контактную прочность:

KH = KHv x KH x KH

где KHv = 1,06 - коэффициент, учитывающий внутреннюю динамику нагружения (выбирается по табл. 2.6[2]); KH - коэффициент, учитывающий неравномерность распределения нагрузки по длине контактных линий, обусловливаемую погрешностями изготовления (погрешностями направления зуба) и упругими деформациями валов, подшипников. Коэффициент KH определяют по формуле:

KH = 1 + (KHo - 1) x KH

Зубья зубчатых колёс могут прирабатываться: в результате повышенного местного изнашивания распределение нагрузки становиться более равномерным. Для определения коэффициента неравномерности распределения нагрузки в начальный период работы KHo предварительно вычисляем ориентировочное значение коэффициента bd:

ba =.5 x ba x (U + 1) =

0.5 x 0,315 x (2,24 + 1) = 0,51

По таблице 2.7[2] KHo = 1,67. KH =,174 - коэффициент, учитывающий приработку зубьев (табл. 2.8[2]). Тогда:

KH = 1 + (1,67 - 1) x,174 = 1,12

Коэффициент KH определяют по формуле:

KH = 1 + (KHo - 1) x KH

KHo - коэффициент распределения нагрузки между зубьями в связи с погрешностями изготовления (погрешность шага зацепления и направления зуба) определяют в зависимости от степени точности по нормам плавности для прямозубой передачи:

KHo = 1 +.6 x (nст - 5) =

1 + 0.06 x (9,0 - 5) = 1,24

KH = 1 + (1,24 - 1) x,174 = 1,42

В итоге:

KH = 1,06 x 1,012 x 1,042 = 1,117

Тогда:

a = 45, x (2,24 + 1) x (1,117 x 372,93 (,315 x 2,24 x 2,4552))13 = 357,111 мм.

Принимаем ближайшее значение a по стандартному ряду: a = 36, мм.

Предварительные основные размеры колеса:

Делительный диаметр:

d2 = 2 x a x U (U + 1) =

2 x 360,0 x 2,24 / (2,24 + 1) = 497,778 мм.

Ширина:

b2 = ba x a =

0,315 x 360,0 = 113,4 мм.

Ширину колеса после вычисления округляем в ближайшую сторону до стандартного числа (см. табл. 24.1[2]): b2 = 110,0 мм.

Максимально допустимый модуль mmax, мм, определяют из условия неподрезания зубьев у основания:

mmax = 2 x a (17 x (U + 1)) =

2 x 360,0 / (17 x (2,24 + 1)) = 13,072 мм.

Минимально допустимый модуль mmin, мм, определяют из условия прочности:

mmin = (Km x KF x Tшест. x (U + 1)) / (a x b2 x []F)

где Km = 3.4 x 103 - для прямозубых передач; []F - наименьшее из значений []F1 и []F2.

Коэффициент нагрузки при расчёте по напряжениям изгиба:

KF = KFv x KF x KF

Здесь коэффициент KFv = 1,018 - коэффициент, учитывающий внутреннюю динамику нагружения, связанную прежде всего с ошибками шагов зацепления шестерни и колеса. Находится по табл. 2.9[2] в зависимости от степени точности по нормам плавности, окружной скорости и твёрдости рабочих поверхностей. KF - коэффициент, учитывающий неравномерность распределения напряжений у основания зубьев по ширине зубчатого венца, оценивают по формуле:

KF =.18 +.82 x KHo =.18 +.82 x 1,67 = 1,55

KF = KFo = 1,24 - коэффициент, учитывающий влияние погрешностей изготовления шестерни и колеса на распределение нагрузки между зубьями.

Тогда:

KF = 1,018 x 1,055 x 1,24 = 1,331

mmin = (3.4 x 103 x 1,331 x 372,93 x (2,24 + 1)) / (360,0 x 110,0 x 144,529) = 0,955 мм.

Из полученного диапазона (mmin...mmax) модулей принимаем значение m, согласуя его со стандартным: m = 3,0.

Для прямозубой передачи предварительно принимаем угол наклона зубьев:  = o.

Суммарное число зубьев:

Z = 2 x a x cos() m =

2 x 360,0 x cos(0,0o) / 3,0 = 240,0

Полученное значение Z округляем в меньшую сторону до целого числа Z = 24. После этого определяется действительное значение угла o наклона зубьев:

 = arccos(Z x m (2 x a)) =

arccos(240,0 x 3,0 / (2 x 360,0)) = 0,0o

Число зубьев шестерни:

z1 = Z (U + 1) >= z1min = 17

z1 = 240 / (2.24 + 1) = 74,074

Принимаем z1 = 75

Коэффициент смещения x1 = 0 при z1 >= 17.

Для колеса внешнего зацепления x2 = -x1 = 0,0

Число зубьев колеса внешнего зацепления:

z2 = Z - z1 = 24 - 75 = 165

Фактическое передаточное число:

Uф = z2 / z1 = 165 / 75 = 2,2

Фактическое значение передаточного числа отличается на 1,786%, что не более, чем допустимые 4% для двухступенчатого редуктора.

Делительное межосевое расстояние:

a = 0.5 x m x (z2 + z1) / cos() =.5 x 3, x (165 + 75) cos(,o) = 36, мм.

Коэффициент воспринимаемого смещения:

y = -(aw - a) / m = -(360,0 - 360,0) / 3,0 = 0,0

Диаметры колёс:

делительные диаметры:

d1 = z1 x m / cos() = 75 x 3, cos(,o) = 225, мм.

d2 = 2 x a - d1 = 2 x 36 - 225, = 495, мм.

диаметры da и df окружностей вершин и впадин зубьев колёс внешнего зацепления:

da1 = d1 + 2 x (1 + x1 - y) x m = 225,0 + 2 x (1 + 0,0 - 0,0) x 3,0 = 231,0 мм.

df1 = d1 - 2 x (1.25 - x1) x m = 225,0 - 2 x (1.25 - 0,0) x 3,0 = 217,5 мм.

da2 = d2 + 2 x (1 + x2 - y) x m = 495,0 + 2 x (1 + 0,0 - 0,0) x 3,0 = 501,0 мм.

df2 = d2 - 2 x (1.25 - x2) x m = 495,0 - 2 x (1.25 - 0,0) x 3,0 = 487,5 мм.

Расчётное значение контактного напряжения:

H = Z x ((KH x Tшест. x (Uф + 1)3) (b2 x Uф))12 a <= []H

где Z = 96 - для прямозубой передачи. Тогда:

H = 96 x ((1,117 x 372,93 x (2,2 + 1)3) (11, x 2,2))12 36, =

200,286 МПа <= []H = 2,455 МПа.

Силы в зацеплении:

окружная:

Ft = 2 x Tшест. / d1 = 2 x 372929,696 / 225,0 = 3314,931 H;

радиальная:

Fr = Ft x tg() cos() = 3314,931 x tg(2o) cos(,o) = 126,536 H;

осевая:

Fa = Ft x tg() = 3314,931 x tg(,o) =, H.

Расчётное напряжение изгиба:

в зубьях колеса:

F2 = KF x Ft x YFS2 x Y x Y (b2 x m) <= []F2

в зубьях шестерни:

F1 = F2 x YFS1 YFS2 <= []F1

Значения коэффициента YFS, учитывающего форму зуба и концентрацию напряжений, определяется в зависимости от приведённого числа зубьев zv и коэффициента смещения. Приведённые числа зубьев:

zv1 = z1 / cos3() = 75 cos3(,o) = 75,

zv2 = z2 / cos3() = 165 cos3(,o) = 165,

По табл. 2.10[2]:

YFS1 = 3,605

YFS2 = 3,59

Значение коэффициента Y, учитывающего угол наклона зуба, вычисляют по формуле:

Y = 1 -  1 = 1 -, 1 = 1,

Для прямозубой передачи для 9-й точности значение коэффициента, учитывающего перекрытие зубьев Ye = 1.

Тогда:

F2 = 1,331 x 3314,931 x 3,59 x 1, x 1, (11, x 3,) =

47,997 МПа <= []F2 = 144,529 МПа.

F1 = 47,997 x 3,65 3,59 =

48,198 МПа <= []F1 = 158,294 МПа.

ПРЕДВАРИТЕЛЬНЫЙ РАСЧЁТ ВАЛОВ

Предварительный расчёт валов проведём на кручение по пониженным допускаемым напряжениям.

Диаметр вала при допускаемом напряжении [кр] = 2 МПа вычисляем по формуле 8.16[1]:

dв >= (16 x Tк / ( x [к]))13

В е д у щ и й в а л.

dв = (16 x 122652,556 / (3,142 x 25))1/3 = 29,235 мм.

Под 1-й элемент (ведомый) выбираем диаметр вала: 36,0 мм.

Под 2-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.

Под 3-й элемент (ведущий) выбираем диаметр вала: 50,0 мм.

Под 4-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.

2 - й в а л.

dв = (16 x 372929,696 / (3,142 x 25))1/3 = 42,353 мм.

Под 1-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.

Под 2-й элемент (ведомый) выбираем диаметр вала: 55,0 мм.

Под 3-й элемент (ведущий) выбираем диаметр вала: 50,0 мм.

Под 4-й элемент (подшипник) выбираем диаметр вала: 45,0 мм.

В ы х о д н о й в а л.

dв = (16 x 806333,672 / (3,142 x 25))1/3 = 54,766 мм.

Под 1-й элемент (подшипник) выбираем диаметр вала: 65,0 мм.

Под 2-й элемент (ведомый) выбираем диаметр вала: 70,0 мм.

Под 3-й элемент (подшипник) выбираем диаметр вала: 65,0 мм.

Под свободный (присоединительный) конец вала выбираем диаметр вала: 60,0 мм.

Диаметры участков валов назначаем исходя из конструктивных соображений.

КОНСТРУКТИВНЫЕ РАЗМЕРЫШЕСТЕРЕН И КОЛЁС

ВЕДУЩИЙ ШКИВ 1-Й РЕМЕННОЙ ПЕРЕДАЧИ.

Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 48,0 = 72,0 мм.

Длина ступицы: Lступ = (1,2...1,5) x dвала = 1,2 x 48,0 = 57,6 мм = 95,0 мм.Толщина обода:о = (1,1...1,3) x h = 1,1 x 8,7 = 9,57 мм = 1, мм.

где h = 8,7 мм - глубина канавки под ремень от делительного диаметра.

Внутренний диаметр обода:

Dобода = d1 - 2 x o = 16, - 2 x 1, = 14, мм = 122,6 мм.

Диаметр центровой окружности:

DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (122,6 + 72,0) = 97,3 мм = 97,0 мм

где Doбода = 122,6 мм - внутренний диаметр обода.

Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (122,6 + 72,0) / 4 = 12,65 мм = 13,0 мм.

ВЕДОМЫЙ ШКИВ 1-Й РЕМЕННОЙ ПЕРЕДАЧИ.

Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 36,0 = 54,0 мм.

Длина ступицы: Lступ = (1...1,5) x dвала = 1,2 x 36,0 = 43,2 мм = 95,0 мм.Толщина обода:о = (1,1...1,3) x h = 1,1 x 8,7 = 9,57 мм = 1, мм.

Внутренний диаметр обода:

Dобода = d2 - 2 x o = 224, - 2 x 1, = 24, мм = 186,6 мм.

Диаметр центровой окружности:

DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (186,6 + 54,0) = 120,3 мм = 120,0 мм

где Doбода = 186,6 мм - внутренний диаметр обода.

Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (186,6 + 54,0) / 4 = 33,15 мм = 33,0 мм.

ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ 2-Й ПЕРЕДАЧИ.

Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 50,0 = 75,0 мм.

Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 50,0 = 40,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b1 = 95,0 мм.

Толщина обода: о = 2,2 x mn +,5 x b1 = 2,2 x 1, +,5 x 1, = 6,95 мм = 7, мм.

где b1 = 95,0 мм - ширина зубчатого венца.

Толщина диска: С = 0,5 x (о +,5 x (Dступ. - Dвала)) =,5 x (7, +,5 x (75, - 5,)) = 9,75 мм = 24, мм.

Внутренний диаметр обода:

Dобода = Df1 - 2 x o = 132,951 - 2 x 7, = 118,951 мм = 119, мм.

Диаметр центровой окружности:

DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (119,0 + 75,0) = 97,0 мм = 98,0 мм

где Doбода = 119,0 мм - внутренний диаметр обода.

Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (119,0 + 75,0) / 4 = 11,0 мм

Фаска: n = 0,5 x mn = 0,5 x 1,0 = 0,5 мм

Округляем по номинальному ряду размеров: n = 1,0 мм.

ЦИЛИНДРИЧЕСКОЕ КОЛЕСО 2-Й ПЕРЕДАЧИ.

Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 55,0 = 82,5 мм. = 82,0 мм.

Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 55,0 = 44,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b2 = 90,0 мм.

Толщина обода: о = 2,2 x mn +,5 x b2 = 2,2 x 1, +,5 x 1, = 6,7 мм = 7, мм.

где b2 = 90,0 мм - ширина зубчатого венца.

Толщина диска: С = 0,5 x (о +,5 x (Dступ. - Dвала)) =,5 x (7, +,5 x (82, - 55,)) = 1,25 мм = 22, мм.

Внутренний диаметр обода:

Dобода = Df2 - 2 x o = 422,49 - 2 x 7, = 48,49 мм = 48, мм.

Диаметр центровой окружности:

DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (408,0 + 82,0) = 245,0 мм = 246,0 мм

где Doбода = 408,0 мм - внутренний диаметр обода.

Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (408,0 + 82,0) / 4 = 81,5 мм = 82,0 мм.

Фаска: n = 0,5 x mn = 0,5 x 1,0 = 0,5 мм

Округляем по номинальному ряду размеров: n = 1,0 мм.

ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ 3-Й ПЕРЕДАЧИ.

Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 50,0 = 75,0 мм.

Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 50,0 = 40,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b1 = 115,0 мм.

Толщина обода: о = 2,2 x mn +,5 x b1 = 2,2 x 3, +,5 x 3, = 12,35 мм = 12, мм.

где b1 = 115,0 мм - ширина зубчатого венца.

Толщина диска: С = 0,5 x (о +,5 x (Dступ. - Dвала)) =,5 x (12, +,5 x (75, - 5,)) = 12,25 мм = 29, мм.

Внутренний диаметр обода:

Dобода = Df1 - 2 x o = 217,5 - 2 x 12, = 193,5 мм = 194, мм.

Диаметр центровой окружности:

DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (194,0 + 75,0) = 134,5 мм = 135,0 мм

где Doбода = 194,0 мм - внутренний диаметр обода.

Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (194,0 + 75,0) / 4 = 29,75 мм = 30,0 мм.

Фаска: n = 0,5 x mn = 0,5 x 3,0 = 1,5 мм

Округляем по номинальному ряду размеров: n = 2,0 мм.

ЦИЛИНДРИЧЕСКОЕ КОЛЕСО 3-Й ПЕРЕДАЧИ.

Диаметр ступицы: dступ = (1,5...1,8) x dвала = 1,5 x 70,0 = 105,0 мм.

Длина ступицы: Lступ = (0,8...1,5) x dвала = 0,8 x 70,0 = 56,0 мм. Длину ступицы, исходя из конструктивных соображений, принимаем равной ширине зубчатого венца: Lступ = b2 = 110,0 мм.

Толщина обода: о = 2,2 x mn +,5 x b2 = 2,2 x 3, +,5 x 3, = 12,1 мм = 12, мм.

где b2 = 110,0 мм - ширина зубчатого венца.

Толщина диска: С = 0,5 x (о +,5 x (Dступ. - Dвала)) =,5 x (12, +,5 x (15, - 7,)) = 14,75 мм = 28, мм.

Внутренний диаметр обода:

Dобода = Df2 - 2 x o = 487,5 - 2 x 12, = 463,5 мм = 464, мм.

Диаметр центровой окружности:

DC отв. = 0,5 x (Doбода + dступ.) = 0,5 x (464,0 + 105,0) = 284,5 мм = 285,0 мм

где Doбода = 464,0 мм - внутренний диаметр обода.

Диаметр отверстий: Dотв. = (Doбода + dступ.) / 4 = (464,0 + 105,0) / 4 = 89,75 мм = 90,0 мм.

Фаска: n = 0,5 x mn = 0,5 x 3,0 = 1,5 мм

Округляем по номинальному ряду размеров: n = 2,0 мм.

ПРОВЕРКА ПРОЧНОСТИ ШПОНОЧНЫХ СОЕДИНЕНИЙ

ВЕДУЩИЙ ШКИВ 1-Й РЕМЕННОЙ ПЕРЕДАЧИ.

Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).

Материал шпоноки - сталь 45 нормализованная.

Напряжение смятия и условие прочности проверяем по формуле 8.22[1].

см = 2 x Т (dвала x (l - b) x (h - t1)) =

2 x 89002,493 / (48,0 x (90,0 - 14,0) x (9,0 - 5,5)) = 13,941 МПа <= [см]

где Т = 89002,493 Нxмм - момент на валу; dвала = 48,0 мм - диаметр вала; h = 9,0 мм - высота шпонки; b = 14,0 мм - ширина шпонки; l = 90,0 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75, МПа.

Проверим шпонку на срез по формуле 8.24[1].

ср = 2 x Т (dвала x (l - b) x b) =

2 x 89002,493 / (48,0 x (90,0 - 14,0) x 14,0) = 3,485 МПа <= [ср]

Допускаемые напряжения среза при стальной ступице [ср] =,6 x [см] =,6 x 75, = 45, МПа.

Все условия прочности выполнены.

ВЕДОМЫЙ ШКИВ 1-Й РЕМЕННОЙ ПЕРЕДАЧИ.

Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 10x8. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).

Материал шпоноки - сталь 45 нормализованная.

Напряжение смятия и условие прочности проверяем по формуле 8.22[1].

см = 2 x Т (dвала x (l - b) x (h - t1)) =

2 x 122652,556 / (36,0 x (90,0 - 10,0) x (8,0 - 5,0)) = 28,392 МПа <= [см]

где Т = 122652,556 Нxмм - момент на валу; dвала = 36,0 мм - диаметр вала; h = 8,0 мм - высота шпонки; b = 10,0 мм - ширина шпонки; l = 90,0 мм - длина шпонки; t1 = 5,0 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75, МПа.

Проверим шпонку на срез по формуле 8.24[1].

ср = 2 x Т (dвала x (l - b) x b) =

2 x 122652,556 / (36,0 x (90,0 - 10,0) x 10,0) = 8,518 МПа <= [ср]

Допускаемые напряжения среза при стальной ступице [ср] =,6 x [см] =,6 x 75, = 45, МПа.

Все условия прочности выполнены.

ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ 2-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.

Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).

Материал шпоноки - сталь 45 нормализованная.

Напряжение смятия и условие прочности проверяем по формуле 8.22[1].

см = 2 x Т (dвала x (l - b) x (h - t1)) =

2 x 122652,556 / (50,0 x (90,0 - 14,0) x (9,0 - 5,5)) = 18,444 МПа <= [см]

где Т = 122652,556 Нxмм - момент на валу; dвала = 50,0 мм - диаметр вала; h = 9,0 мм - высота шпонки; b = 14,0 мм - ширина шпонки; l = 90,0 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75, МПа.

Проверим шпонку на срез по формуле 8.24[1].

ср = 2 x Т (dвала x (l - b) x b) =

2 x 122652,556 / (50,0 x (90,0 - 14,0) x 14,0) = 4,611 МПа <= [ср]

Допускаемые напряжения среза при стальной ступице [ср] =,6 x [см] =,6 x 75, = 45, МПа.

Все условия прочности выполнены.

ЦИЛИНДРИЧЕСКОЕ КОЛЕСО 2-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.

Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 16x10. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).

Материал шпоноки - сталь 45 нормализованная.

Напряжение смятия и условие прочности проверяем по формуле 8.22[1].

см = 2 x Т (dвала x (l - b) x (h - t1)) =

2 x 372929,696 / (55,0 x (80,0 - 16,0) x (10,0 - 6,0)) = 52,973 МПа <= [см]

где Т = 372929,696 Нxмм - момент на валу; dвала = 55,0 мм - диаметр вала; h = 10,0 мм - высота шпонки; b = 16,0 мм - ширина шпонки; l = 80,0 мм - длина шпонки; t1 = 6,0 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75, МПа.

Проверим шпонку на срез по формуле 8.24[1].

ср = 2 x Т (dвала x (l - b) x b) =

2 x 372929,696 / (55,0 x (80,0 - 16,0) x 16,0) = 13,243 МПа <= [ср]

Допускаемые напряжения среза при стальной ступице [ср] =,6 x [см] =,6 x 75, = 45, МПа.

Все условия прочности выполнены.

ЦИЛИНДРИЧЕСКАЯ ШЕСТЕРНЯ 3-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.

Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 14x9. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).

Материал шпоноки - сталь 45 нормализованная.

Напряжение смятия и условие прочности проверяем по формуле 8.22[1].

см = 2 x Т (dвала x (l - b) x (h - t1)) =

2 x 372929,696 / (50,0 x (110,0 - 14,0) x (9,0 - 5,5)) = 44,396 МПа <= [см]

где Т = 372929,696 Нxмм - момент на валу; dвала = 50,0 мм - диаметр вала; h = 9,0 мм - высота шпонки; b = 14,0 мм - ширина шпонки; l = 110,0 мм - длина шпонки; t1 = 5,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75, МПа.

Проверим шпонку на срез по формуле 8.24[1].

ср = 2 x Т (dвала x (l - b) x b) =

2 x 372929,696 / (50,0 x (110,0 - 14,0) x 14,0) = 11,099 МПа <= [ср]

Допускаемые напряжения среза при стальной ступице [ср] =,6 x [см] =,6 x 75, = 45, МПа.

Все условия прочности выполнены.

ЦИЛИНДРИЧЕСКОЕ КОЛЕСО 3-Й ЦИЛИНДРИЧЕСКОЙ ПЕРЕДАЧИ.

Для данного элемента подбираем шпонку призматическую со скруглёнными торцами 20x12. Размеры сечений шпонки и пазов и длины шпонок по ГОСТ 23360-78 (см. табл. 8,9[1]).

Материал шпоноки - сталь 45 нормализованная.

Напряжение смятия и условие прочности проверяем по формуле 8.22[1].

см = 2 x Т (dвала x (l - b) x (h - t1)) =

2 x 806333,672 / (70,0 x (100,0 - 20,0) x (12,0 - 7,5)) = 63,995 МПа <= [см]

где Т = 806333,672 Нxмм - момент на валу; dвала = 70,0 мм - диаметр вала; h = 12,0 мм - высота шпонки; b = 20,0 мм - ширина шпонки; l = 100,0 мм - длина шпонки; t1 = 7,5 мм - глубина паза вала. Допускаемые напряжения смятия при переменной нагрузке и при стальной ступице [см] = 75, МПа.

Проверим шпонку на срез по формуле 8.24[1].

ср = 2 x Т (dвала x (l - b) x b) =

2 x 806333,672 / (70,0 x (100,0 - 20,0) x 20,0) = 14,399 МПа <= [ср]

Допускаемые напряжения среза при стальной ступице [ср] =,6 x [см] =,6 x 75, = 45, МПа.

Все условия прочности выполнены.

КОНСТРУКТИВНЫЕ РАЗМЕРЫКОРПУСА РЕДУКТОРА

Для редукторов толщину стенки корпуса, отвечающую требованиям технологии литья, необходимой прочности и жёсткости корпуса, вычисляют по формуле:

 = 1.3 x (T(тихоходная ступень))14 = 1.3 x 86,33414 = 6,927 мм

Так как должно быть  >= 8. мм, принимаем  = 8. мм.

В местах расположения обработанных платиков, приливов, бобышек, во фланцах толщину стенки необходимо увеличить примерно в полтора раза:

1 = 1.5 x  = 1.5 x 8, = 12, мм

Плоскости стенок, встречающиеся под прямым углом, сопрягают радиусом r = 0.5 x  =.5 x 8, = 4, мм. Плоскости стенок, встречающиеся под тупым углом, сопрягают радиусом R = 1.5 x  = 1.5 x 8, = 12, мм.

Толщина внутренних ребер из-за более медленного охлаждения металла должна быть равна 0,8 x  =,8 x 8, = 6,4 мм.

Учитывая неточности литья, размеры сторон опорных платиков для литых корпусов должны быть на 2...4 мм больше размеров опорных поверхностей прикрепляемых деталей.

Обрабатываемые поверхности выполняются в виде платиков, высота h которых принимается h = (0,4...0,5) x . Принимаем h =,5 x 8, = 4, мм.

Толщина стенки крышки корпуса 3 =,9 x  =,9 x 6,927 = 6,235 мм. Округляя, получим 3 = 6, мм.

Диаметр винтов крепления крышки корпуса вычисляем в зависимости от вращающего момента на выходном валу редуктора:

d = 1,25 x (T(тихоходная ступень))1/3 = 1,25 x 806,3341/3 = 11,635 мм

Принимаем d = 12,0 мм.

Диаметр штифтов dшт = (0,7...0,8) x d = 0,7 x 12,0 = 8,4 мм. Принимаем dшт = 9,0 мм.

Диаметр винтов крепления редуктора к плите (раме):

dф = 1.25 x d = 1.25 x 12,0 = 15,0 мм. Принимаем dф = 16,0 мм.

Высоту ниши для крепления корпуса к плите (раме) принимаем:

h0 = 2,5 x d = 2,5 x 16,0 = 40,0 мм.

РАСЧЕТ РЕАКЦИЙ В ОПОРАХ

1-Й ВАЛ.

Силы, действующие на вал, плечи сил Fa и углы контактов элементов передач:

Fy1 = -2309,12 H

Fx3 = -1811,021 H

Fy3 = -666,297 H

Fz3 = -267,259 H

H3 = 67,726 мм

3 = 9,o

Из условия равенства суммы моментов сил относительно 1-й опоры:

Rx2 = (- F3 x Hx3 x - Fx1 x (L1 + L2 + L3) - Fx3 x L3) / (L2 + L3)

= (- 0,0 x 0,0 x - (0,0) x (95,0 + 85,0 + 198,0) - (-1811,021) x 198,0) / (85,0 + 198,0)

= 1267,075 H

Ry2 = (- F3 x Hy3 x - Fy1 x (L1 + L2 + L3) - Fy3 x L3) / (L2 + L3)

= (- 0,0 x 67,726 x - (-2309,12) x (95,0 + 85,0 + 198,0) - (-666,297) x 198,0) / (85,0 + 198,0)

= 3614,397 H

Из условия равенства суммы сил относительно осей X и Y:

Rx4 = - Fx1 - Rx2 - Fx3

= - (0,0) - 1267,075 - (-1811,021)

= 543,946 H

Ry4 = - Fy1 - Ry2 - Fy3

= - (-2309,12) - 3614,397 - (-666,297)

= -638,98 H

Суммарные реакции опор:

R2 = (Rx22 + Ry22)1/2 = (1267,0752 + 3614,3972)1/2 = 3830,058 H;

R4 = (Rx42 + Ry42)1/2 = (543,9462 + (-638,98)2)1/2 = 839,151 H;

2-Й ВАЛ.

Силы, действующие на вал, плечи сил Fa и углы контактов элементов передач:

Fx2 = -1811,021 H

Fy2 = 666,297 H

Fz2 = 267,259 H

H2 = 212,274 мм

2 = 27,o

Fx3 = -3314,931 H

Fy3 = -1206,536 H

Из условия равенства суммы моментов сил относительно 1-й опоры:

Rx1 = (- F2 x Hx2 x - Fx2 x (L2 + L3) - Fx3 x L3) / (L1 + L2 + L3)

= (- 0,0 x (0,0) x - (-1811,021) x (103,0 + 95,0) - (-3314,931) x 95,0) / (85,0 + 103,0 + 95,0)

= 2379,861 H

Ry1 = (- F2 x Hy2 x - Fy2 x (L2 + L3) - Fy3 x L3) / (L1 + L2 + L3)

= (- 0,0 x (-212,274) x - 666,297 x (103,0 + 95,0) - (-1206,536) x 95,0) / (85,0 + 103,0 + 95,0)

= 139,316 H

Из условия равенства суммы сил относительно осей X и Y:

Rx4 = - Rx1 - Fx2 - Fx3

= - 2379,861 - (-1811,021) - (-3314,931)

= 2746,091 H

Ry4 = - Ry1 - Fy2 - Fy3

= - 139,316 - 666,297 - (-1206,536)

= 400,924 H

Суммарные реакции опор:

R1 = (Rx12 + Ry12)1/2 = (2379,8612 + 139,3162)1/2 = 2383,935 H;

R4 = (Rx42 + Ry42)1/2 = (2746,0912 + 400,9242)1/2 = 2775,204 H;

3-Й ВАЛ.

Силы, действующие на вал, плечи сил Fa и углы контактов элементов передач:

Fx2 = -3314,931 H

Fy2 = 1206,536 H

Из условия равенства суммы моментов сил относительно 1-й опоры:

Rx1 = (- Fx2 x L2) / (L1 + L2)

= (- (-3314,931) x 95,0) / (188,0 + 95,0)

= 1112,786 H

Ry1 = (- Fy2 x L2) / (L1 + L2)

= (- 1206,536 x 95,0) / (188,0 + 95,0)

= -405,021 H

Из условия равенства суммы сил относительно осей X и Y:

Rx3 = - Rx1 - Fx2

= - 1112,786 - (-3314,931)

= 2202,145 H

Ry3 = - Ry1 - Fy2

= - (-405,021) - 1206,536

= -801,515 H

Суммарные реакции опор:

R1 = (Rx12 + Ry12)1/2 = (1112,7862 + (-405,021)2)1/2 = 1184,202 H;

R3 = (Rx32 + Ry32)1/2 = (2202,1452 + (-801,515)2)1/2 = 2343,473 H;

ПРОВЕРКА ДОЛГОВЕЧНОСТИ ПОДШИПНИКОВ

1-Й ВАЛ.

Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 309 средней серии со следующими параметрами:

d = 45,0 мм - диаметр вала (внутренний посадочный диаметр подшипника);

D = 100,0 мм - внешний диаметр подшипника;

C = 52,7 кН - динамическая грузоподъёмность;

Co = 30,0 кН - статическая грузоподъёмность.

Радиальные нагрузки на опоры:

Pr1 = 3830,0585 H;

Pr2 = 839,1505 H.

Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 1.

Эквивалентная нагрузка вычисляется по формуле:

Рэ = (Х x V x Pr1 + Y x Pa) x Кб x Кт,

где - Pr1 = 3830,0585 H - радиальная нагрузка; Pa = Fa = 267,2588 H - осевая нагрузка; V = 1,0 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,1 (см. табл. 9.19[1]); температурный коэффициент Кт = 1,0 (см. табл. 9.20[1]).

Отношение Fa / Co = 267,2588 / 30000,0 = 0,0089; этой величине (по табл. 9.18[1]) соответствует e = 0,1209.

Отношение Fa / (Pr1 x V) = 267,2588 / (3830,0585 x 1,0) = 0,0698 <= e; тогда по табл. 9.18[1]: X = 1,0; Y = 0,0.

Тогда: Pэ = (1,0 x 1,0 x 3830,0585 + 0,0 x 267,2588) x 1,1 x 1,0 = 4213,0643 H.

Расчётная долговечность, млн. об. (формула 9.1[1]):

L = (C / Рэ)3 = (52700,0 / 4213,0643)3 = 1957,2107 млн. об.

Расчётная долговечность, ч.:

Lh = L x 106 / (60 x n1) = 1957,2107 x 106 / (60 x 501,3793) = 65060,8785 ч,

что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n1 = 501,3793 об/мин - частота вращения вала.

2-Й ВАЛ.

Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 309 средней серии со следующими параметрами:

d = 45,0 мм - диаметр вала (внутренний посадочный диаметр подшипника);

D = 100,0 мм - внешний диаметр подшипника;

C = 52,7 кН - динамическая грузоподъёмность;

Co = 30,0 кН - статическая грузоподъёмность.

Радиальные нагрузки на опоры:

Pr1 = 2383,9351 H;

Pr2 = 2775,2037 H.

Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 2.

Эквивалентная нагрузка вычисляется по формуле:

Рэ = (Х x V x Pr2 + Y x Pa) x Кб x Кт,

где - Pr2 = 2775,2037 H - радиальная нагрузка; Pa = Fa = 267,2588 H - осевая нагрузка; V = 1,0 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,1 (см. табл. 9.19[1]); температурный коэффициент Кт = 1,0 (см. табл. 9.20[1]).

Отношение Fa / Co = 267,2588 / 30000,0 = 0,0089; этой величине (по табл. 9.18[1]) соответствует e = 0,1209.

Отношение Fa / (Pr2 x V) = 267,2588 / (2775,2037 x 1,0) = 0,0963 <= e; тогда по табл. 9.18[1]: X = 1,0; Y = 0,0.

Тогда: Pэ = (1,0 x 1,0 x 2775,2037 + 0,0 x 267,2588) x 1,1 x 1,0 = 3052,7241 H.

Расчётная долговечность, млн. об. (формула 9.1[1]):

L = (C / Рэ)3 = (52700,0 / 3052,7241)3 = 5144,8081 млн. об.

Расчётная долговечность, ч.:

Lh = L x 106 / (60 x n2) = 5144,8081 x 106 / (60 x 159,168) = 538718,7349 ч,

что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n2 = 159,168 об/мин - частота вращения вала.

3-Й ВАЛ.

Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 313 средней серии со следующими параметрами:

d = 65,0 мм - диаметр вала (внутренний посадочный диаметр подшипника);

D = 140,0 мм - внешний диаметр подшипника;

C = 92,3 кН - динамическая грузоподъёмность;

Co = 56,0 кН - статическая грузоподъёмность.

Радиальные нагрузки на опоры:

Pr1 = 1184,202 H;

Pr2 = 2343,4735 H.

Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 2.

Эквивалентная нагрузка вычисляется по формуле:

Рэ = (Х x V x Pr2 + Y x Pa) x Кб x Кт,

где - Pr2 = 2343,4735 H - радиальная нагрузка; Pa = Fa = 0,0 H - осевая нагрузка; V = 1,0 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,1 (см. табл. 9.19[1]); температурный коэффициент Кт = 1,0 (см. табл. 9.20[1]).

Отношение Fa / Co = 0,0 / 56000,0 = 0,0; этой величине (по табл. 9.18[1]) соответствует e = 0,0.

Отношение Fa / (Pr2 x V) = 0,0 / (2343,4735 x 1,0) = 0,0 <= e; тогда по табл. 9.18[1]: X = 1,0; Y = 0,0.

Тогда: Pэ = (1,0 x 1,0 x 2343,4735 + 0,0 x 0,0) x 1,1 x 1,0 = 2577,8208 H.

Расчётная долговечность, млн. об. (формула 9.1[1]):

L = (C / Рэ)3 = (92300,0 / 2577,8208)3 = 45903,6185 млн. об.

Расчётная долговечность, ч.:

Lh = L x 106 / (60 x n3) = 45903,6185 x 106 / (60 x 71,0572) = 10766829,4647 ч,

что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n3 = 71,0572 об/мин - частота вращения вала.

УТОЧНЁННЫЙ РАСЧЁТ ВАЛОВ

РАСЧЁТ 1-ГО ВАЛА.

Крутящий момент на валу Tкр. = 122652,556 Hxмм.

Для данного вала выбран материал: сталь 45. Для этого материала:

- предел прочности b = 78, МПа;

- предел выносливости стали при симметричном цикле изгиба

-1 =,43 x b =,43 x 78, = 335,4 МПа;

- предел выносливости стали при симметричном цикле кручения

-1 =,58 x -1 =,58 x 335,4 = 194,532 МПа.

2-E СЕЧЕНИE.

Диаметр вала в данном сечении D = 45,0 мм. Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом (см. табл. 8.7[1]).

Коэффициент запаса прочности по нормальным напряжениям:

S = -1 ((k ( x )) x v +  x m), где:

- амплитуда цикла нормальных напряжений:

v = Mизг. Wнетто = 219366,425 8946,176 = 24,521 МПа,

здесь

Wнетто =  x D3 32 =

3,1416 x 45,03 / 32 = 8946,176 мм3

- среднее напряжение цикла нормальных напряжений:

m = Fa ( x D2 4) = 267,259 (3,142 x 45,2 4) =,168 МПа, Fa = -267,259 МПа - продольная сила,

-  =,2 - см. стр. 164[1];

-  =.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];

- k = 4, - находим по таблице 8.7[1];

Тогда:

S = 335,4 ((4,,97) x 24,521 +,2 x,168) = 3,316.

Коэффициент запаса прочности по касательным напряжениям:

S = -1 ((k  (t x )) x v + t x m), где:

- амплитуда и среднее напряжение отнулевого цикла:

v = m = max 2 =,5 x Tкр. Wк нетто =,5 x 122652,556 17892,352 = 3,428 МПа,

здесь

Wк нетто =  x D3 16 =

3,1416 x 45,03 / 16 = 17892,352 мм3

- t =.1 - см. стр. 166[1];

-  =.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].

- k = 2,8 - находим по таблице 8.7[1];

Тогда:

S = 194,532 ((2,8,97) x 3,428 +,1 x 3,428) = 19,4.

Результирующий коэффициент запаса прочности:

S = S x S (S2 + S2)12 = 3,316 x 19,4 (3,3162 + 19,42)12 = 3,267

Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.

3-E СЕЧЕНИE.

Диаметр вала в данном сечении D = 50,0 мм. Концентрация напряжений обусловлена наличием шпоночной канавки. Ширина шпоночной канавки b = 14,0 мм, глубина шпоночной канавки t1 = 5,5 мм.

Коэффициент запаса прочности по нормальным напряжениям:

S = -1 ((k ( x )) x v +  x m), где:

- амплитуда цикла нормальных напряжений:

v = Mизг. Wнетто = 166151,87 1747,54 = 15,46 МПа,

здесь

Wнетто =  x D3 32 - b x t1 x (D - t1)2 (2 x D) =

3,142 x 50,03 / 32 - 14,0 x 5,5 x (50,0 - 5,5)2/ (2 x 50,0) = 10747,054 мм3,

где b=14,0 мм - ширина шпоночного паза; t1=5,5 мм - глубина шпоночного паза;

- среднее напряжение цикла нормальных напряжений:

m = Fa ( x D2 4) = 267,259 (3,142 x 5,2 4) =,136 МПа, Fa = -267,259 МПа - продольная сила,

-  =,2 - см. стр. 164[1];

-  =.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];

- k = 1,8 - находим по таблице 8.5[1];

-  =,82 - находим по таблице 8.8[1];

Тогда:

S = 335,4 ((1,8 (,82 x,97)) x 15,46 +,2 x,136) = 9,579.

Коэффициент запаса прочности по касательным напряжениям:

S = -1 ((k  (t x )) x v + t x m), где:

- амплитуда и среднее напряжение отнулевого цикла:

v = m = max 2 =,5 x Tкр. Wк нетто =,5 x 122652,556 2318,9 = 2,664 МПа,

здесь

Wк нетто =  x D3 16 - b x t1 x (D - t1)2 (2 x D) =

3,142 x 50,03 / 16 - 14,0 x 5,5 x (50,0 - 5,5)2/ (2 x 50,0) = 23018,9 мм3,

где b=14,0 мм - ширина шпоночного паза; t1=5,5 мм - глубина шпоночного паза;

- t =.1 - см. стр. 166[1];

-  =.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].

- k = 1,7 - находим по таблице 8.5[1];

-  =,7 - находим по таблице 8.8[1];

Тогда:

S = 194,532 ((1,7 (,7 x,97)) x 2,664 +,1 x 2,664) = 28,44.

Результирующий коэффициент запаса прочности:

S = S x S (S2 + S2)12 = 9,579 x 28,44 (9,5792 + 28,442)12 = 9,65

Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.

РАСЧЁТ 2-ГО ВАЛА.

Крутящий момент на валу Tкр. = 372929,696 Hxмм.

Для данного вала выбран материал: сталь 45. Для этого материала:

- предел прочности b = 78, МПа;

- предел выносливости стали при симметричном цикле изгиба

-1 =,43 x b =,43 x 78, = 335,4 МПа;

- предел выносливости стали при симметричном цикле кручения

-1 =,58 x -1 =,58 x 335,4 = 194,532 МПа.

2-E СЕЧЕНИE.

Диаметр вала в данном сечении D = 55,0 мм. Концентрация напряжений обусловлена наличием шпоночной канавки. Ширина шпоночной канавки b = 16,0 мм, глубина шпоночной канавки t1 = 6,0 мм.

Коэффициент запаса прочности по нормальным напряжениям:

S = -1 ((k ( x )) x v +  x m), где:

- амплитуда цикла нормальных напряжений:

v = Mизг. Wнетто = 2729,186 14238,49 = 14,553 МПа,

здесь

Wнетто =  x D3 32 - b x t1 x (D - t1)2 (2 x D) =

3,142 x 55,03 / 32 - 16,0 x 6,0 x (55,0 - 6,0)2/ (2 x 55,0) = 14238,409 мм3,

где b=16,0 мм - ширина шпоночного паза; t1=6,0 мм - глубина шпоночного паза;

- среднее напряжение цикла нормальных напряжений:

m = Fa ( x D2 4) = 267,259 (3,142 x 55,2 4) =,112 МПа, Fa = 267,259 МПа - продольная сила,

-  =,2 - см. стр. 164[1];

-  =.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];

- k = 1,8 - находим по таблице 8.5[1];

-  =,76 - находим по таблице 8.8[1];

Тогда:

S = 335,4 ((1,8 (,76 x,97)) x 14,553 +,2 x,112) = 9,433.

Коэффициент запаса прочности по касательным напряжениям:

S = -1 ((k  (t x )) x v + t x m), где:

- амплитуда и среднее напряжение отнулевого цикла:

v = m = max 2 =,5 x Tкр. Wк нетто =,5 x 372929,696 3572,237 = 6,99 МПа,

здесь

Wк нетто =  x D3 16 - b x t1 x (D - t1)2 (2 x D) =

3,142 x 55,03 / 16 - 16,0 x 6,0 x (55,0 - 6,0)2/ (2 x 55,0) = 30572,237 мм3,

где b=16,0 мм - ширина шпоночного паза; t1=6,0 мм - глубина шпоночного паза;

- t =.1 - см. стр. 166[1];

-  =.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].

- k = 1,7 - находим по таблице 8.5[1];

-  =,65 - находим по таблице 8.8[1];

Тогда:

S = 194,532 ((1,7 (,65 x,97)) x 6,99 +,1 x 6,99) = 11,46.

Результирующий коэффициент запаса прочности:

S = S x S (S2 + S2)12 = 9,433 x 11,46 (9,4332 + 11,462)12 = 7,269

Расчётное зна



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-11-10 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: