Эмиссионная фотометрия пламени (пламенная фотометрия)




 

Пламенная фотометрия является одним из вариантов эмиссионного спектрального анализа и основана на измерении интенсивности света, излучаемого возбужденными частицами (атомами или молекулами) при введении вещества в пламя горелки.

Принцип метода заключается в том, что раствор анализируемого вещества распыляют с помощью сжатого воздуха в пламени горелки, где происходит ряд сложных процессов, в результате которых образуются возбужденные атомы или молекулы. За счет энергии пламени, легко возбуждаемым атомом вещества (K, Na, Ca), сообщается избыточная энергия. Атомы этих металлов переходят в возбужденное состояние, характеризующееся переходом валентных (наружных) электронов на более высокие энергетические уровни. Через 10-8 секунды происходит их возврат на основные уровни, что сопровождается выделением порций энергии (квантов света). Совокупность квантов света приводит к образованию светового потока с длиной волны, характерной для атомов K, Na, Ca. Их излучение направляют в спектральный прибор, выделяющий излучение определяемого элемента светофильтрами или другими монохроматорами. Попадая на детектор (фотоэлемент), излучение вызывает фототок, который после усиления измеряют стрелочным гальванометром. Нахождение содержания определяемого вещества проводят с помощью градуировочного графика зависимости величины фототока от концентрации элемента, который строят по результатам анализа серии стандартных растворов. Отклонение от линейности градуировочного графика наблюдается в области больших (больше 100 мкг/мл у калия) и малых концентраций. В первом случае происходит самопоглощение света невозбужденными атомами, а во втором - уменьшается доля свободных атомов за счет смещения равновесия реакции ионизации атомов.

Наиболее распространенными отечественными приборами для пламенной фотометрии являются:

а) фильтровой пламенный фотометр типа ФПЛ-1 для определения Na, K, Ca из одного раствора прямым методом;

б) пламенный фотометрический анализатор жидкости ПАЖ-1 для определения микроколичеств Na, K, Ca и Li при их совместном присутствии в растворе;

в) пламенный фотометр FLAPHO-4 для определения Li, Na, K, Ca и Rb.

Поскольку спектры эмиссии атомов значительно проще молекулярных, то именно методы, основанные на их получении, стали широко применяться для массового многоэлементарного экспресс-анализа.

Пи АЭА анализируемая проба вещества вводится в источник возбуждения спектрального прибора. В источнике возбуждения данная проба подвергается сложным процессам, заключающимся в плавлении, испарении, диссоциации молекул, ионизации атомов, возбуждении атомов и ионов.

Возбуждённые атомы и ионы через очень короткое время (~10-7-108с) самопроизвольно возвращаются из неустойчивого возбуждённого состояния в нормальное или промежуточное состояние. Это приводит к излучению света с частотой  и появлению спектральной линии.

Общую схему атомной эмиссии можно представить так:

А + Е  А*  А + h

Степень и интенсивность протекания этих процессов зависит от энергии источника возбуждения (ИВ).

Наиболее распространёнными ИВ являются: газовое пламя, дуговые и искровые разряды, индукционносвязанная плазма (ИСП). Их энергетической характеристикой можно считать температуру.

Сравнительная характеристика различных ИВ приведена в табл.2.3.1.

 

Таблица 1.

Сравнительная характеристика различных источников возбуждения

Источник возбуждения Темпратура, 0С Возбуждаемые элементы
Пламя:   Щелочные металлы
а) светильный газ - воздух    
б) ацетилен - воздух   Щелочные и щелочноземельные металлы
в) ацетилен - кислород   Практически все металлы
Дуга постоянного тока 3500 - 7000 Металлы, С, N
Дуга переменного тока 5000 - 8000 Металлы, С, N и некоторые металлоиды
Высоковольтная искра 10000 (в факеле) Почти все элементы
Индукционно связанная плазма (ИСП) 3000 (в канале) Все элементы

 

Методами АЭА можно исследовать твёрдые и жидкие пробы. Способы введения вещества в ИВ приведены в табл.2.3.2.

Различают качественный, полуколичественный и количественный АЭА.

Качественный анализ проводят путём идентификации спектральных линий в спектре пробы, т.е. установления их длины волны, интенсивности и принадлежности тому или иному элементу.

Для расшифровки спектра и определения длины волны анализируемой линии пользуются спектрами сравнения, в которых длины волн отдельных линий указаны. Чаще всего для этой цели используют хорошо изученный спектр железа, имеющий характерные группы линий с известными  в разных областях длин волн.

 

Таблица 2.

Способы введения в ИВ

Источник возбуждения Фазовый характер образца Способ введения
Пламя Жидкость Распыление
Дуга Жидкость Нанесение на торец графит электрода
  Порошок Нанесение в графитовый электрод
  Металлический слиток Изготовление электродов из анализируемого образца
Искра Жидкость Впрыскивание в искровой промежуток вращающимся колёсиком
  Порошок Изготовление прессованных брикетов
  Металлический слиток Введение в ИК без специальной обработки

 

При визуальном качественном АЭА строят дисперсионную кривую (рис.2.3.1) используемого прибора (стилоскопа, стилометра), т.е. градуировочный график прибора, выражающий зависимость между показаниями его отсчётного барабана и длиной волны линии в эталонном спектре n = f () (меди, железа и др.). Затем поочерёдно фиксируют все линии в спектре пробы анализируемого Рис.2.3.1. Дисперсионная кривая прибора

Вещества в делениях шкалы отсчётного барабана. По графику зависимости n = f() устанавливают длины волн спектральных линий. После этого идентифицируют линии в спектре пробы с помощью специальных таблиц, в которых указана принадлежность всех возможных спектральных линий определённым элементам (с указанием их числа, цвета, длины волны, потенциала ионизации, ИВ), табл.2.3.3.

Считается, что элемент присутствует в пробе, если идентифицированы три или четыре его спектральных линии.

 

Таблица 3.

Элемент Потенциал ионизации, эВ Длина волны, нм Характеристика линии
Аl (искровой разряд) 5.98 624.3.623.2.484.2.466.3 559.3 Оранжевая Оранжевая Синяя Ярко-синяя Желтая

 

При фотографическом варианте АЭА через специальную диафрагму над или под исследуемым спектром фотографируют эталонный спектр железа (рис.2.3.2).

Для определения длины волны x неизвестной линии выбирают в спектре сравнения резкие линии с 1 и 2 так, чтобы анализируемая линия находилась между ними.

С помощью спектропроектора идентификацию проводят, совмещая эталонный спектр железа, на котором приведены последние линии других элементов, с исследуемым спектром и отмечают совпадения линий сравниваемых спектров. Отсутствие последней линии определяемого элемента в спектре гарантирует отсутствие других линий этого элемента. Однако наличие линии с , характерной для последней линии какого-либо элемента, ещё не означает, что данная линия принадлежит именно этому элементу. Это может быть и следствием наложения спектральных линий. Поэтому окончательную идентификацию проводят, проверяя последние линии всех "подозреваемых" элементов.

Качественным АЭА определяют более 80 элементов с пределом обнаружения от 10-2% (Hg, Os и др.) до 10-5% (Na, B, Bi и др.). Низкий предел обнаружения может привести к переоткрытию элементов, попавших в пробу в результате случайных загрязнений.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-11-10 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: