Расширения полуполя неотрицательных рациональных чисел комплексным числом




Теорема 2.3.1. Если , то – поле тогда и только тогда, когда Q +(-a2) – поле.

Доказательство. По теореме 2.1.1 Q +(ai) – поле равносильно существованию

f ¹0, f (ai)=0.

Так как все степени aiÎ Q +(ai). Рассмотрим некоторый многочлен

.

Равенство выполняется тогда и только тогда, когда действительная и мнимая часть равны нулю.

То есть,

Это верно тогда и только тогда, когда Q +(- a2) – поле.

Получили, что Q +(ai) – поле тогда и только тогда, когда Q +(-a 2) – поле. ■

Как следствие получаем более ценные утверждения.

Следствие 1. Если , то Q +(ai) – полуполе тогда и только тогда, когда Q +(-a2) – полуполе.

Следствие 2. Если и Q +(-b2) – полуполе, aÎ Q +(-b2), то Q +(a + bi) – полуполе.

Теорема 2.3.2. Пусть – комплексный корень квадратного трехчлена f(x) неприводимого над Q. Тогда – полуполе в том и только том случае, когда f(x) имеет положительный действительный корень.

Доказательство. Пусть удовлетворяет минимальному соотношению, являющемуся квадратным уравнением без положительных корней. Тогда , где D – дискриминант минимального соотношения.

Рассмотрим минимальный многочлен, соответствующий данному минимальному значению. Он имеет вид . Если b, c ≥ 0, то имеем многочлен из . Пусть многочлен имеет два отрицательных корня, тогда , . То есть . Если многочлен не имеет действительных корней, то

(*)

То есть, .

Рассмотрим .

При получаем многочлен из Q +[ x ]. Пусть . Введем обозначения:

, , ,

, , .

Тогда многочлен примет вид . Умножим его на , получим многочлен . Если , то это искомый многочлен иначе умножим его на .

Докажем, что, проделав такую операцию достаточно большое количество раз, мы получим многочлен из Q +. Докажем, что найдется такие k, что . При этом . Для начала найдем дискриминант уравнения .

То есть, дискриминант Dl+1 имеет тот же знак, что и Dl. Так как D0 <0, то пользуясь методом математической индукции заключаем, что любой дискриминант Dl <0.

Рассмотрим неравенство , подставим , . Получим

.

То есть,

.

Зная, что заметим

.

 

Итак, для доказательства нам достаточно установить, что

.

То есть,

.

Пусть аналогичными рассуждениями мы установили, что нам достаточно доказать неравенство

.

Тогда

.

Раскрывая скобки и приводя подобные слагаемые, получим, что

.

Используя оценку и деля на положительный элемент , получаем

.

Обозначим . Рассмотрим отображение , заданное по правилу . При , . Отображение является сжимающим. Оно имеет единственную неподвижную точку. Найдем ее: . Откуда . Заметим, что . Последовательность стремится к 4. То есть, нам достаточно установить, что , а это следует из (*). Итак, мы доказали, что . То есть, мы нашли такой многочлен, , что . Итак, мы доказали, что если удовлетворяет минимальному соотношению, являющемуся квадратным уравнением без положительных корней, то – поле. ■

Следствие 1. Если – мнимый корень квадратного трехчлена, то ‑ поле.

Следствие 2. Любое простое расширение является полем , порожденным минимальным соотношением 2 степени.

Доказательство.

Заметим, что . Покажем, что для любого a Î Q найдется такой квадратный многочлен , что - его корень многочлена. Для этого достаточно представить . Возьмем такой , что , тогда . Очевидно, . Таким образом, нам удалось найти многочлен из . То есть, - поле. ■

 

Рассмотрим последовательность действительных чисел :

(**)

Будем говорить, что последовательность задается числами p и q.

Лемма 2.3.3. Существует n, что .

Доказательство. Пусть . Покажем, что последовательность убывающая.

,

то есть .

Пусть , тогда

Так как , то

Пользуясь методом математической индукции, заключаем, что , то есть - убывающая.

Так как - монотонно убывающая и ограничена снизу 0, то существует . Тогда .

То есть, . Но тогда

,

,

что невозможно для . То есть, . ■


Лемма 2.3.4. Если , то существует , что .

Доказательство. Запишем а и b в виде десятичных дробей:

, Так как , то существует k, что и .

Тогда . Рассмотрим число .

То есть, . ■

Теорема 2.3.5. Если и , то

.

Доказательство. По лемме 2.3.3, . Пусть .

Если n=1, то . Рассмотрим .

То есть,

.

Так как . По лемме 2.3.4 . Тогда

.

Рассмотрим n > 1.

Пусть .

Покажем, что

Раскроем скобки и сгруппируем члены при xj.

То есть,

Заметим, что . Для существования , по лемме 2.3.4, достаточно выполнения условий и , то есть, . Обозначим . Так как , то и . Для существования достаточно доказать существование и . То есть, . Обозначим . Повторим эту операцию n-2 раза. Получим, что . По лемме 2.3.4, существует, если и . Эти условия следуют из того, что и .

Таким образом, доказано существование

Теорема 2.3.6. Если минимальный многочлен f-g порождает полуполе то, он либо имеет положительный действительный корень, либо корень , такой что и последовательность (**), заданная числами p и q, не содержит отрицательных элементов.

Доказательство. Пусть многочлен f-g не имеет положительных действительных корней, и для всех корней вида , где , последовательность (**), заданная числами p и q, содержит отрицательный элемент. Тогда, по теореме 2.3.5, для каждого множителя вида существует многочлен , что . Рассмотрим многочлен . так как и . Кроме того , а остальные множители многочлена имеют вид или . То есть, . Таким образом . По теореме 2.1.1, минимальный многочлен порождает поле. ■

Теорема 2.3.7. Для комплексных чисел расширение , минимальное соотношение которого имеет положительный корень, является полуполем.

Доказательство. Пусть a' – положительный корень минимального соотношения. Предположим, что – поле. Тогда существует многочлен f с положительными коэффициентами, делящийся на минимальный многочлен. Значит f (a')=0. Но . Значит a' – не является корнем многочлена f. То есть – полуполе. ■

Примеры

1. Рассмотрим . Оно удовлетворяет минимальному соотношению . По теореме 2.3.7, - полуполе. Аналогично доказывается, что – полуполе.

2. – полуполе. Для доказательства нужно воспользоваться теоремой 2.3.1.

3. Покажем, что – полуполе. Во-первых, заметим, что . Рассмотрим . По теореме 2.3.7, ‑ полуполе. Тогда, по теореме 2.3.1, – полуполе. . То есть, – полуполе.

4. , минимальное соотношение которого имеет вид , есть полуполе. Действительно, многочлен имеет положительный корень, а значит - полуполе.

 

Теперь приведем примеры полей.

5. является полем, потому что его минимальный многочлен имеет вид .

6. Пусть удовлетворяет минимальному соотношению . Его минимальный многочлен делит . То есть, – поле. Несложно видеть, что . Итак, .

7. Пусть удовлетворяет минимальному соотношению . Тогда – поле.

8. Пусть , если , то – поле. Так как , то Если , то . Рассмотрим последовательность (**), порожденную p и q. . По теореме 2.3.7, – поле.


Литература

1. Вечтомов Е.М. Введение в полукольца. – Киров: Изд-во Вятского гос. пед. ун-та, 2000

2. Вечтомов Е.М. О свойствах полутел // Матем. вестник педвузов Волго-Вятского региона. – 2001, вып. 3. – Киров: Изд-во Вят. гос. пед. ун-та. – С. 11-20.

3. Ряттель А.В. Однопорожденные полукольца с делением // Матем. вестник педвузов Волго-Вятского региона. – 2002, вып. 4.– Киров: Изд-во Вятского госпедуниверситета. – С. 39-45.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: