Теорема o замкнутом графике.




Предположим, что X и Y являются F-пространствами, отображение Т:X→Y линейно и множество G={(x, Tx): xÎX} (его график) замкнуто в X´Y. Тогда Т – непрерывно.

Предложение 2. Пусть Ù - линейный функционал на топологическом векторном пространстве X. Допустим, чтоÙx ¹0 для некоторого x из X.

Тогда если Ù непрерывен, то ядро N(Ù) замкнуто в X.

Доказательство.

Так как N(Ù) = Ù ({0}), а {0} – замкнутое множество поля скаляров (как любое одноточечное подмножество), то тогда непрерывность Ù влечет замкнутость ядра (как прообраз замкнутого множества при непрерывном отображении).

 

Теорема 1.

а) Если Р – непрерывный проектор в топологическом векторном пространстве X, то X представляется в виде прямой суммы подпространств X=R(P)ÅN(P);

б) Обратно: если Х является F-пространством и X представляется в виде прямой суммы подпространств Х=АÅВ, то проектор Р с образом А и ядром В непрерывен.

Доказательство:

а) Так как Р и I-P непрерывны, то подпространства N(P) и R(P)=N(I-P) замкнуты (см. предложение 2), значит по второму свойству проекторов X=R(P)ÅN(P);

Чтобы доказать б) достаточно проверить, что проектор Р удовлетворяет условиям теоремы о замкнутом графике.

Пусть последовательности x →x и Px →y.

Так как Px принадлежит А, А – замкнуто, следовательно y принадлежит A, а значит y = Py.

Аналогично x - Px принадлежит В, В – замкнуто, следовательно x-y принадлежит B, значит Py = Px поэтому y = Px. Получили, что точка (x, y) принадлежит G (см. теорему о замкнутом графике). Отсюда вытекает, что проектор Р непрерывен.

Определение. Топологической группой называется группа G, снабженная такой топологией, относительно которой групповые операции в G непрерывны.

Расшифровка этого определения состоит в том, что постулируется непрерывное отображение j:G´G®G, определенного равенством: j(x,y)=xy .

Определение. Топологическая группа G, топология которой компактна, называется компактной группой.

Определение. Топологическое векторноепространство X называется локально выпуклым, если в нем всякое непустое открытое множество содержит непустое выпуклое открытое подмножество.

Определение. Пространство X называется пространством Фреше, если оно является локально выпуклым F-пространством.

Определение. Предположим, что топологическое векторное пространство X и топологическая группа G связаны следующим образом: кждому элементу s из G сопоставлен непрерывный линейный оператор T :X®X, причем

T = T T , где s, t принадлежат G

и отображение (s, x) ® T x прямого произведения G´X в пространстве X непрерывно. В этом случае говорят, что группа G непрерывно и линейно действует в пространстве X.

Теорема 2.

Пусть Y – дополняемое подпространство Фреше Х, и пусть компактная группа G непрерывна и линейно действует на Х, причем Т (Y)ÌY для любого sÎG. Тогда существует непрерывный проектор Q пространства Х на подпространство Y, коммутирующий со всеми операторами Т .

Лемма Фату. Пусть на множестве E задана последовательность измеримых, почти всюду конечных функций f (x), которая сходится по мере к некоторой почти всюду конечной функции f. Тогда

dm £ dm

Пример недополняемого подпространства.

Рассмотрим подпространство Y=H пространства Х=L , где L - пространство всех суммируемых функций на комплексной плоскости, а H состоит из всех функций L , для которых (n)=0, при всех n<0. (n) обозначает n-ый коэффициент Фурье функции f и вычисляется:

(n)= e dx, (n=0, 1, 2, …). (1)

(для простоты обозначается: f(x)=f(e )).

В качестве группы G возьмем мультипликативную группу всех комплексных чисел, по модулю равных 1, и сопоставим каждому элементу

e ÎG оператор сдвига t , полагая, что

(t f)(x) = f(x+s), где s – некоторое вещественное число. (2)

Теперь посмотрим, как изменяются коэффициенты Фурье при таком сдвиге: ()(n) = e dx.

Произведем замену: x+s = t Þ x = t-s. Тогда

()(n)= e d(t-s) =

= e e dt=e e dt=e (n),

то есть (t f) (n)= e (n). (3).

Так как e ÎG, то t (H ) = H для любого вещественного s.

Если бы подпространство H было дополняемо в L , то из Т2. следовало бы существование такого непрерывного проектора Q пространства L на H , что t Q = Qt для любого вещественного s. (4).

Найдем вид проектора. Положим e (x)=e . Тогда t e =e e , а так как оператор Q линеен, то

Qt e = e Qe . (5).

Из (4) и (5) следует, что

(Qe )(x-s) = e (Qe )(x). (6).

Пусть С = (Qe )(0). При Q = 0 соотношение (6) имеет вид

Qe = C e . (7).

Воспользуемся тем, что образом оператора Q служит подпространство Н . Так как Qe принадлежит H для любого n, то из (7) следует, что

С = 0 для любого n<0. Так как Qf = f для любого f из H , то С = 1 при любом n³0.

Таким образом, проектор Q должен являться «естественным», то есть его действие сводится к замене нулями всех коэффициентов Фурье с отрицательными номерами:

Q( e )= e . (8).

Рассмотрим функцию f (x) = e , (0<r<1), (9).

которая представляет собой ядро Пуассона: , в частности f >0. Поэтому

= dx = dx = 1 для любого r. (10) Но (Qf )(x) = e = (11).

Так как dx = ¥, то из леммы Фату следует, что ® ¥, при

r ® 1. В силу (10) это противоречит непрерывности оператора Q.

Таким образом, доказано, что H недополняемо в L .

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: