Побочные эффекты моноклональных антител




К нежелательным явлениям при лечении препаратами моноклональных антител относят:

· аллергические реакции;

· гриппоподобный синдром (повышение температуры, недомогание, боли в мышцах);

· тошноту, понос и другие диспептические нарушения

· уменьшение количества клеток крови — тромбоцитов, лейкоцитов, эритроцитов;

· кардиотоксическое действие (не всегда).

Ограничения препаратов моноклональных антител

 

Во-первых, гибридные моноклональные антитела сами представляют собой антигены, поэтому высок риск аллергических реакций. Во-вторых, молекулы моноклональных антител имеют большие размеры и не всегда могут проникнуть в клетки или ткани. В-третьих, исследования показывают, что иногда сами препараты моноклональных антител могут вызывать лимфомы и другие опухоли, а также слишком сильно снижать иммунитет. Наконец, препараты моноклональных антител необходимо очень медленно вводить в вену, и лишь врачи высокой квалификации способны понять, насколько эффективно лечение, и выбрать оптимальную дальнейшую тактику.

И все же введение в медицинскую практику препаратов, модифицирующих иммунный ответ, является по-настоящему важным достижением. Уже сейчас производство моноклональных антител стало самой быстро развивающейся частью фармацевтической промышленности. Ведется множество доклинических и клинических исследований новых препаратов с многообещающими свойствами, оставляя нам надежду, что в будущем средства на основе моноклональных антител станут обычным делом, и врачам удастся справиться с множеством недугов, которые считаются неизлечимыми сегодня.


Лекция 20, 21 Тема: Клонирование эмбрионов млекопитающих. Химерные и трансгенные животные.(4 часа)

План лекции

1. Клонирование эмбрионов млекопитающих.

2. Химерные и трансгенные животные

Эмбриогенетическая инженерия — это активная перестройка генома животных путем вмешательства в их развитие на самых ранних стадиях онтогенеза. Перестройка генома — это рекон­струкция эмбрионов путем клонирования, слияния или непо­средственной инъекции в их ядра чужеродной ДНК. Однако получение эмбриональных клонов, химер или трансгенных животных возможно лишь в результате успешной трансплантации реконструированного эмбриона.

Трансплантация — метод ускоренного воспроизводства высо­копродуктивных животных путем получения и переноса одного или нескольких эмбрионов от высокоценных животных (доно­ров) менее ценным животным (реципиентам). Использование трансплантации позволяет получать от одной генетически цен­ной самки в десятки раз больше потомства.

Технология трансплантации опирается на крупные достиже­ния в области биологии размножения животных и включает следующие приемы:

1) гормональное вызывание суперовуляции; 2) осеменение доноров семенем производителей, оцененных по качеству потомства; 3) извлечение и оценку качества эмбрионов, сохранение и пересадку или криоконсервирование эмбрионов в жидком азоте, оттаивание и пересадку.

Трансплантацию эмбрионов применяют для следующих целей:

1. размножения генетически ценных особей; с помощью этого метода может быть решен вопрос быстрого создания высокопродуктивных линий и семейств, резистентных к болезням;

2. получения идентичных животных путем разделения ранних эмбрионов. Это дает возможность изучить взаимодействие генотип — среда, выяснить влияние наследственности на хозяйственно полезные признаки. Технология разделения эмбрионов позволяет одну половину полученной бластоцисты подвергнуть глубокому охлаждению, а из другой вырастить животное. Если производитель (из одной половины бластоцисты) окажется генетически ценным, то имеется возможность воспроизвести его копию через определенный промежуток времени;

3. сохранения мутантных генов, малых популяций и генофонда пород;

4. получения потомков от бесплодных, но генетически ценных по генотипу животных;

5) выявления вредных рецессивных генов и хромосомных аномалий;

6. повышения устойчивости животных к болезням;

7. борьбы с болезнями путем замены импорта и экспорта животных на импорт и экспорт криоконсервированных эмбрионов;

8. акклиматизации импортных животных иностранных пород;

9. определения пола эмбриона и получения животных определенного пола;

10. межвидовых пересадок;

11. получения химерных животных, которые развиваются из ранних эмбрионов, сконструированных из бластомеров разных животных.

 

Истинные клоны позвоночных животных — амфибий были получены путем пересадки ядер соматических клеток в энуклеированные яйцеклетки. Получение эмбриональных клонов осно­вано на свойстве тотипотентности эмбриональных клеток.

В 1952 г. Р. Бриггс и Т. Кинг разработали метод пересадки ядер соматических клеток зародышей в энуклеированные яйце­клетки лягушек. Дж. Гёрдон в 1962 г. усовершенствовал технику пересадки. Он разрушал ядра яйцеклеток лягушки ультрафиоле­товыми лучами, затем в каждое из яиц вводил ядро из дифференцированной клетки кишечного эпителия плавающего голо­вастика (рис. 29). В ряде случаев такие ядра вызывали развитие генетически идентичных эмбрионов и взрослых лягушек. Впе­рвые были получены истинные клоны позвоночных животных. Затем был использован метод культивирования in vitro клеток кожи взрослых лягушек. Пересадка ядер из таких клеток привела к получению генетических клонов головастиков, но вероятность успеха при трансплантации ядер из клеток кожи взрослых лягу­шек очень мала. При использовании ядер соматических клеток взрослых животных развитие клонов ограничивалось стадией го­ловастиков.

В последние 10 лет разработан метод пересадки ядер, соче­тающий приемы микрохирургии и технику слияния клеточных фрагментов, начато проведение опытов по трансплантации ядер У овец и крупного рогатого скота.

Несмотря на сложность проведения работ по трансплантации ядер соматических клеток в энуклеированную зиготу, проблема эта является актуальной, так как открывает возможности копирования выдающихся по продуктивности животных и создания стад с высоким генетическим потенциалом.

Клоны можно получить путем разделения эмбрионов на ранней стадии развития. Установлено, что, если количество клеток эмбриона (бластомеров) не превышает 16, они еще не дифференцированы. Это позволяет разъединять эмбрио­ны (бластулы) на 2 и большее число и получать однояйцевых близнецов. К настоящему времени получены монозиготные близнецы телят, жеребят, ягнят и поросят. В перспективе пред­полагается, что обеспечение оптимальных условий для культивирования ранних эмбрионов in vitro создаст возможность выращивать половинки эмбрионов с последующим неоднократным их разделением, что позволит в значительной степени увеличить число годных для трансплантации зародышей, происходящих от одного эмбриона, и получить более многочисленные клоны эмбрионов у сельскохозяйственных животных, что будет способство­вать более успешной их селекции.

Химерные животные

Одно из перспективных направлений биотехнологии — искус­ственное получение химер (аллофенных животных). Понятие хи­мера означает составное животное. Сущность метода получения химер заключается в искусственном объединении эмбриональ­ных клеток двух и более животных. Животные могут быть как одной породы, так и разных пород и даже разных видов. Совре­менная микрохирургия позволяет получать химер, имеющих 3—4 и более родителей. Химеры обладают признаками животных раз­ных генотипов.

Существует два основных метода получения химер искусст­венным путем: 1) агрегационный — объединение двух и более морул или бластоцист в один эмбрион; 2) инъекцион­ный — микроинъекция клеток внутриклеточной массы (ВКМ) бластоцисты доноров в бластоцель эмбриона-реципиента. В обоих случаях получают особей, ткани и органы которых постро­ены из клонов клеток объединенных (двух или более) эмбрионов. Первыми созданы химеры лабораторных мышей между линиями агути (кремовые) и не агути (черные). Они выглядели крапчатыми. Их окраска сочетала признаки обоих родителей: полосы пигментированной шерсти чередовались со светлыми, каждая полоса представляла клон клетки-родоначальницы. Их использование помогает изучению фундаментальных проблем дифференцировки клеток в процессе онтогенеза, многих вопро­сов механизма клеточного развития и происхождения отдельных тканей, иммунологического взаимодействия в развитии и т. д.

В настоящее время имеются внутривидовые и межвидовые химеры не только лабораторных животных (мышей, хомяков, крыс), но и сельскохозяйственных животных (коров, коз, овец).

Изучение химер позволит понять процесс реализации генома в фенотипе животных. В Великобритании и ФРГ были получены межвидовые химеры между овцой (2п = 54) и козой (2п = 60), названные овцекозами. В крови химер обнаружены красные кро­вяные тельца и овцы, и козы. Их шерсть представляла собой смесь волос того и другого вида. Экстерьер соответствовал одно­му из родителей. Интересным является факт рождения ягненка от козы и козленка от овцы. В США в 1987 г. были получены химеры овец и коз и химеры овцы между породами рамбулье и

финский ландрас. В нашей стране получен химерный бычок от животных черно-пестрой и красной пород. Он в фенотипе соче­тал черно-пеструю масть с красными пятнами (Л. К. Эрнст, 1987).

Приведенные материалы свидетельствуют о возможности по­лучения химер (генетических мозаиков) в животноводстве. Одна­ко в потомстве химерных животных не сохраняется родитель­ский генотип, происходит расщепление и нарушаются ценные генетические комбинации.

Несмотря на это, предполагается, что при усовершенствова­нии методов получения химер они могут представлять большой интерес для практики животноводства. Таким путем можно по­лучить животных с более высокой резистентностью к ряду болез­ней и с признаками, которые обычно плохо сочетаются в одном организме.

Трансгенные животные

Трансгеноз — экспериментальный перенос генов, выделенных из определенного генома или искусственно синтезированных, в другой геном. Животные, в геном которых интегрируют чуже­родные гены, называют трансгенными. В ряде экспериментов было установлено, что мыши, развивающиеся из зиготы, в кото­рую была введена чужеродная ДНК, содержат в своем геноме фрагменты этой ДНК, а иногда у них происходит и экспрессия чужеродных генов. В 1980 г. Дж. Гордон с сотр. впервые показа­ли возможность трансформации мыши путем введения в пронук-леус оплодотворенной яйцеклетки мыши рекомбинантных моле­кул, содержащих ген тимидинкиназы (ген ТК) вируса герпеса. Лучшие результаты были получены при микроинъекции реком-бинантной ДНК в мужской более крупный пронуклеус. Метод микроинъекции чужеродной ДНК в мужской пронуклеус зиготы используется в настоящее время у всех млекопитающих, включая сельскохозяйственных животных. Созданы линии трансгенных мышей, которые различались между собой структурой чужерод­ной ДНК. Мышам были введены гены: гемоглобина кролика, Р-глобина человека, лейкоцитарного интерферона человека, гор­мона роста крысы и человека.

Особого внимания заслуживает опыт Пальмитера и сотр., в котором осуществлена пересадка мышам гена гормона роста крысы. В этом случае промотор бактерий был непригоден. Для микроинъекции была создана рекомбинантная ДНК, состоящая из соединенных фрагментов различных генов: промоторной части гена — металлотионеина МТ-1 мыши и структурной части — гена гормона роста крысы, в котором собственные про­мотор и инициатор были удалены. В зиготы мыши инъецировали по 600 копий рекомбинантной ДНК. Получен 21 потомок. У семи мышей был обнаружен чужеродный ген — ген гормона роста крысы. Живая масса трансгенных мышат была в 1,8 раза больше, чем контрольных. Таких трансгенных животных назвали супермышами. В среднем у трансгенных мышей интегрируется 25—30 % копий введенной ДНК.

Успешные опыты с мышами способствовали проведению работ по получению трансгенных кроликов и сельскохозяйствен­ных животных. Схема получения трансгенных животных в ос­новном такая же, как и при работе с мышами. Она состоит из следующих этапов: 1) выбор, получение и клонирование чуже­родного гена; 2) получение зигот и выявление пронуклеусов,- 3)микроинъекция определенного числа копий генов в видимый пронуклеус; 4) трансплантация зиготы в половые пути гормо­нально подготовленной самки; 5) оценка родившихся животных по генотипу и фенотипу: интеграция чужеродной ДНК, экспрес­сия ДНК, влияние на признак (например, высокая интенсив­ность роста), установление наследования гена.

Наиболее трудной проблемой в опытах по переносу генов в ткани или организмы животных оказалась экспрессия внесенных генов. Выяснилось, что только четыре промотора (генов метал-лотионеина, трансферрина, иммуноглобулина, эластазы) из мно­гих исследованных способны активировать присоединенные к ним гены.

Трансгенные кролики были получены Р. Хаммером и Г. Бре-мом с сотр. Они производили микроинъекцию в пронуклеусы кроликов гена гормона роста человека. В нашей стране в отделе биотехнологии ВИЖа получена трансгенная крольчиха с интег­рацией и экспрессией гена гормона роста крупного рогатого скота (Щ. К. Эрнст и др., 1990).

В Австралии получили первых в мире трансгенных овец. В возрасте 2—4 лет трансгенные овцы в 1,5 раза превосходили по массе сверстников той же породы. Австралийские ученые пред­полагают ввести овцам и другие гены, которые должны привести к ускорению роста шерсти, усилению резистентности к болез­ням.

Трансгенные свиньи впервые были получены в лабораториях Р. Хаммера (1985) и Г. Брема (1986) на основе инъекции гормо­на роста человека. У некоторых таких свиней в плазме крови отмечался высокий уровень гормона роста человека. В нашей стране получены трансгенные свиньи на основе инъекции в зиготы гена гормона роста крупного рогатого скота.

При работе с крупным рогатым скотом, для того чтобы обна­ружить пронуклеусы, применяют ДНК-специфические флуорес­центные окраски и центрифугирование зигот. В 1987 г. родился первый трансгенный теленок молочно-мясного типа.

В порядке совершенствования процесса трансгеноза разрабатывается метод оплодотворения яйцеклеток in vitro с помощью микроинъекции одного сперматозоида с включенной в него чужеродной ДНК.

В перспективе предполагается получение трансгенных животных для производства новых продуктов, которые можно будет производить в промышленном масштабе, если они будут полезны с медицинской точки зрения. С этой целью будет использоваться рекомбинантная ДНК, с помощью которой от трансгенных животных будут получать, например, из коровьего молока, крови или печени такие белки, как инсулин человека, интерферон и гормоны. Разрабатывается биотехнология производства фактора свертывания крови из молока трансгенных овец. Предполагается, что фактор свертываемости, необходимый для лече­ния гемофилии, будет синтезироваться в клетках молочной железы овец и переходить в молоко.

Внедрение современных биотехнологий — гибридизации соматических клеток, клеточной и генной инженерии в сочетании с эмбриогенетической инженерией — определяет новые подходы в деле создания более устойчивых к болезням высокопродуктивных пород животных с признаками, которых не было у исходных пород или они были слабо выражены. Открываются новые пер­спективы для получения лекарственных веществ: гормонов, вак­цин, аминокислот, витаминов и т. д. Синтез генов и совершен­ствование методов их введения позволяют ввести в клетку на место поврежденных генов нормальные гомологи, что обеспечит лечение наследственных болезней. Широкое распространение получат способы нейтрализации действия вредных генов с помощью введения репрессоров.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-09-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: