Урок 4/31
Подробно презентация
Тема: Происхождение и эволюция галактик и звезд
Ход урока:
Новый материал.
Космогония - раздел астрономии, занимающийся проблемами происхождения и эволюции небесных тел. Космология развивается исходя из гипотез, подтверждаемых наблюдаемыми фактами и позволяющие предсказать новые открытия. Эволюция - изменения объекта, происходящие в течение жизни: от рождение до стадии угасания.
Происхождение и эволюция галактик.
Возникновение метагалактики | |||||||||||||||||||||||||||||||||||||||||||
![]() | Известные нам законы физики начали действовать с момента tв= 10-43 с, когда стали существенными явления гравитации, квантования и релятивизма, характеризуемые соотношением гравитационной постоянной G, постоянной Планка ћ и скоростью света с, когда размеры Вселенной составляли Rв = 10-31 м при плотности материи r в =1074–1094 г/см3 с температурой Тв = 1,3 × 1032 К. | ||||||||||||||||||||||||||||||||||||||||||
При расширении пространства температура и плотность среды уменьшались намного быстрее плотности вакуума. Отрицательное давление физического вакуума р = - р× с2 породило явление взаимного отталкивания материальных объектов, обратное гравитации. Не имевшие ранее массы частицы материи, стремительно поглощали чудовищную энергию порождавшего их вакуума. Инфляционная Мини-Вселенная была чем-то похожа на раздувающийся воздушный шарик: расстояние между всеми точками поверхности равномерно увеличивалось потому, что между ними возникало, увеличивалось само пространство. Мини-Вселенная не расширялась в каком-то внешнем по отношению к ней пространстве: само пространство возникало, увеличивалось внутри нее, "раздвигало" ее границы. Энергия распада "ложного вакуума" к моменту tв = 10-36 с полностью выделилась в форме рождения частиц; инфляционное расширение Мини-Вселенной закончилась. | |||||||||||||||||||||||||||||||||||||||||||
Сверхраскаленный "пузырь" Мини-Вселенной распался из-за внутренней нестабильности на множество мелких областей - метагалактик. По мере расширения Метагалактики уменьшалась плотность ее материи и энергия излучения, температура среды падала пропорционально расширению пространства. При дальнейшем расширении Метагалактики температура упала ниже 109 К и синтез атомных ядер прекратился, поскольку энергии фотонов и других частиц стало недостаточно для протекания этих реакций. В период времени от 10 до 100 с с момента возникновения метагалактики закончилась аннигиляция ("вымирание") электронно-позитронных пар. | |||||||||||||||||||||||||||||||||||||||||||
Возникновению и сохранению сгустков содействовало то, что при наличии отдельных уплотнений в разных точках пространства на каждый протон или нейтрон приходилось разное количество переносящих энергию фотонов. С понижением температуры и плотности среды уменьшалась вероятность образования новых "возмущений плотности", а старые сгустки продолжали рассасываться. Через сотни тысяч лет уцелели лишь те сгустки, чья начальная масса была больше 105 - 106М¤ | |||||||||||||||||||||||||||||||||||||||||||
Через 1012 с после Большого Взрыва началась эпоха рекомбинации - разделения вещества и излучения. Свидетель той поры - реликтовое излучение. За миллиарды лет расширения Метагалактики его температура понизилась с 4000 К до 2,725 К. | |||||||||||||||||||||||||||||||||||||||||||
"Блины" массой до 1014 М¤ стали зародышами протогалактических скоплений. В их недрах происходили разнообразные тепловые и гидродинамические процессы, приводившие к распаду ("дроблению") "блинов" на мелкие, отдельные, плотные облака газа массой 1010-1012 М¤, из которых образовались протогалактики, преобразовавшиеся в галактики на протяжении последующего миллиарда лет. Подробнее Образование галактик | |||||||||||||||||||||||||||||||||||||||||||
![]() | |||||||||||||||||||||||||||||||||||||||||||
2. Эволюция звезд | |||||||||||||||||||||||||||||||||||||||||||
Эволюция - изменения, происходящие в течение жизни звезды, включая ее рождение в межзвездной среде, истощение годного к использованию ядерного топлива и конечную стадию угасания. Горение водорода в ядре продолжается до тех пор, пока не истощатся запасы топлива. В течение этой фазы звезда находится на главной последовательности диаграммы Герцшпрунга-Рессела. Здесь масштабы времени резко уменьшаются с увеличением массы. Для Солнца время жизни на главной последовательности составляет 10 млрд. лет (около половины которого уже прошло). Когда при исчерпании всего топлива горение водорода в ядре прекращается, в структуре звезды происходят фундаментальные изменения, связанные с потерей источника энергии. Звезда уходит с главной последовательности в область красных гигантов. Рост температуры и плотности в звёздном ядре ведёт к условиям, в которых может (в зависимости от массы) активироваться новый источник термоядерной энергии: выгорание гелия (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов. При температурах порядка 108 K кинетическая энергия ядер гелия становится достаточно высокой для преодоления кулоновского барьера: два ядра гелия (альфа-частицы) могут сливаться с образованием нестабильного изотопа бериллия Be8: He4 + He4 = Be8.Большая часть Be8 снова распадается на две альфа-частицы, но при столкновении Be8 с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода C12: Be8 + He4 = C12 + 7,3 МэВ. | |||||||||||||||||||||||||||||||||||||||||||
Массивные звезды | |||||||||||||||||||||||||||||||||||||||||||
![]()
| |||||||||||||||||||||||||||||||||||||||||||
Эволюция звезд типа Солнца | |||||||||||||||||||||||||||||||||||||||||||
Протозвезда. Звезды образуются в результате гравитационной неустойчивости в холодных и плотных молекулярных облаках (если его масса не менее 2000 масс Солнца. Т=10К). Поэтому звезды всегда рождаются группами (скоплениями, комплексами). Гигантские молекулярные облака с массами, большими 105 M¤ (их известно более 6 000), содержат 90 % всего молекулярного газа Галактики. Именно с ними связаны области звездообразования. Если бы гигантские молекулярные облака в Галактике свободно сжимались из-за гравитационной неустойчивости, то за 50 миллионов лет из них образовались бы звезды. Сжатию способствуют ударные волны при расширении остатков вспышек сверхновых, спиральные волны плотности и звездный ветер от горячих ОВ-звезд. Температура вещества при переходе от молекулярных облаков через фрагментацию облака (появление глоб) к звездам возрастает в миллионы раз, а плотность – в 1020 раз, увеличивается скорость вращения.
По достижению температуры в несколько миллионов градусов в центре начинаются термоядерные реакции. Минимальная масса, которая необходима для этого, составляет около одной двенадцатой массы Солнца. Если вещества меньше, то реакции нуклеосинтеза никогда не начнутся. Объекты, массы которых лежат в промежутке 0,01–0,08 M¤, называются коричневыми карликами. | |||||||||||||||||||||||||||||||||||||||||||
Звезда. Ядро втягивает все, или почти все вещество, сжимается и когда температура внутри превысит 10 млн.К, начинается процесс выгорания водорода (термоядерная реакция). Для звезд с M¤ от самого начала прошло 60 млн.лет, а для звезд с 10M¤ прошло 300000 лет. При массе ядра не превосходящей 0,08 массы Солнца, температуры такой не достигнет, возникнет коричневый карлик, который не попадает на главную последовательность, постепенно погаснет и в конце рассеется. Звезда на главной последовательности. Находится пока внутри происходит термоядерная реакция выгорания водорода в ядре, что зависит от массы. Время жизни самое долгое в эволюции. Для звезд разной массы: M=0,8M¤ τ=20 млрд.лет, M=M¤ τ=10 млрд.лет,M=1,5M¤ τ=1,5 млрд.лет, M=2,0M¤ τ=0,8 млрд.лет После того как звезда израсходует содержащийся в центральной части водород, гелиевое ядро начнет сжиматься, его температура повысится настолько, что начнутся реакции с большим энерговыделением (при температуре 2•107 К начинается горение гелия - составляет по времени десятую часть горения Н). В прилегающем к ядру слое, как правило, остается водород, возобновляются протон-протонные реакции, давление в оболочке существенно повышается, и внешние слои звезды резко увеличиваются в размерах. На диаграмме Герцшпрунга – Рассела звезда начинает смещаться вправо – в область красных гигантов, увеличиваясь примерно в размере в 50 раз. Звезды скромных размеров, включая и Солнце, в конце жизни, после стадии красного гиганта сжимаются, сбрасывают оболочку (до 30% массы - образуется планетарная туманность), превращаясь в белые карлики, имеющие массу, не превышающую 1,2 M¤, радиус в 100 раз меньше солнечного, и, следовательно, плотность в миллион раз больше солнечной. Белый карлик продолжает слабо светиться еще очень долго, пока его тепло не израсходуется полностью, и он превратится в мертвого черного карлика. | |||||||||||||||||||||||||||||||||||||||||||
Завершающие стадии эволюции красных гигантов | |||||||||||||||||||||||||||||||||||||||||||
|
Будущее Метагалактики |
![]() |
3. Возраст звезд и галактик |
1) С помощью космического аппарата НАСА WMAP, запущенного 30 июня 2001г, курсирующего вокруг Солнца по орбите гравитационного баланса между Солнцем, Землей и Луной и собирающего сведения о фоновом микроволновом излучении, в 2005 году установлено: а) Возраст нашей Галактики составляет 13,7 млрд.лет (точность 1%). б) Вселенная состоит из - 4% атомов на которые распространяются известные законы электромагнетизма и гравитации; - 23% занимает темное вещество; - остальные 73% загадочная "антигравитация", побуждающая Вселенную расширяться. 2) Галактики начали образовываться через 100 млн.лет после Большого Взрыва и в последующие 3-5 млрд.лет сформировались и сгруппировались в скопления. Следовательно возраст самых старых эллиптических галактик около 14 млрд.лет. 3) Первые звезды появляются через 1млн.лет после Большого Взрыва, следовательно должны иметься звезды с возрастом около 14 млрд.лет. 4) Исследования самых старых шаровых скоплений, где звезды рождаются практически одновременно, показывает, что возраст звезд в них не менее 10 млрд.лет (население 2-го типа с низким содержанием элементов тяжелее Не). Скорее всего они образовались одновременно с галактиками. 5) Рассеянные скопления (звездные ассоциации) имеют возраст звезд 10-100 млн.лет (население 1-го типа звезд с высоким, около 3%, содержанием металлов). Процесс звездообразования идет и сейчас (например в туманности Ориона). |
4. Шкала Вселенной |
2. Закрепление материала:
1. Каков эволюционный путь звезды с массой 1,7 солнечно и показать треки на диаграмме Г-Р.
2. Решение №8, стр.182
Итог:
1. Что такое космогония и ее отличие от космологии?
2. Каковы основные этапы эволюции звезд?
3. Какова судьба Солнца в будущем?
4. Оценки.
Дома: §31, вопросы стр. 181-182, СР№16
Дополнение: Космологические парадоксы Вселенной
Материальность Вселенной