Многоугольники и их свойства




1. В треугольнике АВС проведена биссектриса АМ. Прямая, проходящая через вершину В перпендикулярно АМ, пересекает сторону АС в точке N. АВ = 6; ВС = 5; АС = 9.

а) докажите, что биссектриса угла С делит отрезок МN пополам

б) пусть Р — точка пересечения биссектрис треугольника АВС. Найдите отношение АР: РN.

2. Диагональ AC прямоугольника ABCD с центром O образует со стороной AB угол 30°. Точка E лежит вне прямоугольника, причём ∠ BEC = 120°.

а) Докажите, что ∠ CBE = ∠ COE.

б) Прямая OE пересекает сторону AD прямоугольника в точке K. Найдите EK, если известно, что BE = 40 и CE = 24.

3. Медианы AA 1, BB 1 и CC 1 треугольника ABC пересекаются в точке M. Точки A 2, B 2 и C 2 — середины отрезков MA, MB и MC соответственно.

а) Докажите, что площадь шестиугольника A 1 B 2 C 1 A 2 B 1 C 2 вдвое меньше площади треугольника ABC.

б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что AB = 5, BC = 8 и AC = 10.

4. Медианы AA 1, BB 1 и CC 1 треугольника ABC пересекаются в точке M. Известно, что AC = 3 MB.

а) Докажите, что треугольник ABC прямоугольный.

б) Найдите сумму квадратов медиан AA 1 и CC 1, если известно, что AC = 12.

5. На отрезке BD взята точка C. Биссектриса BL равнобедренного треугольника ABC с основанием BC является боковой стороной равнобедренного треугольника BLD с основанием BD.

а) Докажите, что треугольник DCL равнобедренный.

б) Известно, что В каком отношении прямая DL делит сторону AB?

6. На сторонах AC и BC треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M — середина стороны AB.

а) Докажите, что

б) Найдите расстояние от точки M до центров квадратов, если AC = 10, BC = 32 и ∠ ACB = 30°.

7. На гипотенузу AB прямоугольного треугольника ABC опустили высоту CH. Из точки H на катеты опустили перпендикуляры HK и HE.

а) Докажите, что точки A, B, K и E лежат на одной окружности.

б) Найдите радиус этой окружности, если AB = 12, CH = 5.

8. На диагонали параллелограмма взяли точку, отличную от её середины. Из неё на все стороны параллелограмма (или их продолжения) опустили перпендикуляры.

а) Докажите, что четырёхугольник, образованный основаниями этих перпендикуляров, является трапецией.

б) Найдите площадь полученной трапеции, если площадь параллелограмма равна 16, а один из его углов равен 60°.

9. В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E — на отрезке AB.

а) Докажите, что FH = 2 DH.

б) Найдите площадь прямоугольника DEFH, если AB = 4.

10. Дан выпуклый четырёхугольник ABCD.

а) Докажите, что отрезки LN и KM, соединяющие середины его противоположных сторон, делят друг друга пополам.

б) Найдите площадь четырёхугольника ABCD, если ,

11. Высоты BB 1 и CC 1 остроугольного треугольника ABC пересекаются в точке H.

а) Докажите, что ∠ AHB 1 = ∠ ACB.

б) Найдите BC, если и ∠ BAC = 60°.

12. В остроугольном треугольнике ABC провели высоту BH, из точки H на стороны AB и BC опустили перпендикуляры HK и HM соответственно.

а) Докажите, что треугольник MBK подобен треугольнику ABC.

б) Найдите отношение площади треугольника MBK к площади четырёхугольника AKMC, если BH = 2, а радиус окружности, описанной около треугольника ABC равен 4.

13. Медианы AA 1, BB 1 и CC 1 треугольника ABC пересекаются в точке M. Известно, что AC = 3 MB.

а) Докажите, что треугольник ABC прямоугольный.

б) Найдите сумму квадратов медиан AA 1 и CC 1, если известно, что AC = 10.

14. На сторонах AD и BC параллелограмма ABCD взяты соответственно точки M и N, причём M — середина AD, а BN: NC = 1: 3.

а) Докажите, что прямые AN и AC делят отрезок BM на три равные части.

б) Найдите площадь четырёхугольника, вершины которого находятся в точках С, N и точках пересечения прямой BM c прямыми AN и AC, если площадь параллелограмма ABCD равна 48.

15. Точка M — середина стороны AD параллелограмма ABCD. Из вершины A проведены два луча, которые разбивают отрезок BM на три равные части.

а) Докажите, что один из лучей содержит диагональ параллелограмма.

б) Найдите площадь четырёхугольника, ограниченного двумя проведёнными лучами и прямыми BD и BC, если площадь параллелограмма ABCD равна 40.

16. Медианы AA 1, BB 1 и CC 1 треугольника ABC пересекаются в точке M. Точки A 2, B 2 и C 2 — середины отрезков MA, MB и MC соответственно.

а) Докажите, что площадь шестиугольника A 1 B 2 C 1 A 2 B 1 C 2 вдвое меньше площади треугольника ABC.

б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что AB = 4, BC = 7 и AC = 8.

17. Прямая, проходящая через вершину В, прямоугольника ABCD, перпендикулярная диагонали АС и пересекает сторону АD в точке M, равноудаленной от вершин В и D.

а) Докажите, что BM и ВD делят угол В на три равных угла.

б) Найдите расстояние от точки пересечения диагоналей прямоугольника ABCD до прямой СМ, если

18. Диагональ AC разбивает трапецию ABCD с основанием AD и BC, из которых AD большее, на два подобных треугольника.

а) Докажите, что ∠ ABC = ∠ ACD.

б) Найдите отрезок, соединяющий середины оснований трапеции, если известно, что BC = 18, AD = 50 и

19. Точка M лежит на стороне BC выпуклого четырёхугольника ABCD, причём B и C — вершины равнобедренных треугольников с основаниями AM и DM соответственно, а прямые AM и MD перпендикулярны.

а) Докажите, что биссектрисы углов при вершинах B и C четырёхугольника ABCD, пересекаются на стороне AD.

б) Пусть N — точка пересечения этих биссектрис. Найдите площадь четырёхугольника ABCD, если известно, что BM: MC = 3: 4, а площадь четырёхугольника, стороны которого лежат на прямых AM, DM, BN и CN, равна 24.

20. В треугольнике АВС проведены высоты АК и СМ. На них из точек М и К опущены перпендикуляры МЕ и КН соответственно.

 

а) Докажите, что прямые ЕН и АС параллельны;

б) Найдите отношение ЕН: АС, если угол АВС равен 30°.

21. В трапеции ABCD точка E — середина основания AD, точка M — середина боковой стороны AB. Отрезки CE и DM пересекаются в точке O.

а) Докажите, что площади четырёхугольника AMOE и треугольника COD равны.

б) Найдите, какую часть от площади трапеции составляет площадь четырёхугольника AMOE, если BC = 3, AD = 4.

22. В остроугольном треугольнике ABC проведены высоты AK и CM. На них из точек M и K опущены перпендикуляры ME и KH соответственно.

а) Докажите, что прямые EH и AC параллельны.

б) Найдите отношение EH и AC, если

23. Дана трапеция ABCD с боковой стороной AB, которая перпендикулярна основаниям. Из точки А на сторону CD опущен перпендикуляр AH. На стороне AB взята точка E так, что прямые СЕ и СD перпендикулярны.

а) Доказать, что прямые BH и ED параллельны.

б) Найти отношение BH к ED, если

24. В прямоугольном треугольнике АВС с прямым углом С точки М и N — середины катетов АС и ВС соответственно, СН — высота.

а) Докажите, что прямые МН и NH перпендикулярны.

б) Пусть Р — точка пересечения прямых АС и NH, а Q — точка пересечения прямых BC и МН. Найдите площадь треугольника PQM, если АН = 12 и ВН = 3.

25. На продолжении стороны АС за вершину А треугольника АВС отмечена точка D так, что AD = AB. Прямая, проходящая через точку А, параллельно BD, пересекает сторону ВС в точке M.

а) Докажите, что AM — биссектриса треугольника АВС.

б) Найти SAMBD, если AC = 30, BC = 18 и AB = 24.

26. На отрезке BD взята точка C. Биссектриса BL равнобедренного треугольника ABC с основанием BC является боковой стороной равнобедренного треугольника BLD с основанием BD.

а) Докажите, что треугольник DCL равнобедренный.

б) Известно, что В каком отношении прямая DL делит сторону AB?

27. В прямоугольном треугольнике ABC точки M и N — середины гипотенузы AB и катета BC соответственно. Биссектриса угла BAC пересекает прямую MN в точке L.

а) Докажите, что треугольники AML и BLC подобны.

б) Найдите отношение площадей этих треугольников, если

28. Точки B 1 и C 1 лежат на сторонах соответственно AC и AB треугольника ABC, причём AB 1: B 1 C = AC 1: C 1 B. Прямые BB 1 и CC 1 пересекаются в точке O.

а) Докажите, что прямая AO делит пополам сторону BC.

б) Найдите отношение площади четырёхугольника AB 1 OC 1 к площади треугольника ABC, если известно, что AB 1: B 1 C = AC 1: C 1 B = 1: 4.

29. На катетах AC и BC прямоугольного треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M — середина гипотенузы AB, H — точка пересечения прямых CM и DK.

а) Докажите, что CM DK.

б) Найдите MH, если известно, что катеты треугольника ABC равны 130 и 312.

30. На сторонах AC и BC треугольника ABC вне треугольника построены квадраты ACDE и BFKC. Точка M — середина стороны AB.

а) Докажите, что

б) Найдите расстояния от точки M до центров квадратов, если и

31. Медианы AA 1, BB 1, и CC 1 треугольника ABC пересекаются в точке M. Точки A 2, B 2 и C 2 — середины отрезков MA, MB и MC соответственно.

а) Докажите, что площадь шестиугольника A 1 B 2 C 1 A 2 B 1 C 2 вдвое меньше площади треугольника ABC.

б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что AB = 5, BC = 8 и AC = 10.

32. Дана трапеция ABCD с основаниями AD и BC. Диагональ BD разбивает её на два равнобедренных треугольника с основаниями AD и CD.

а) Докажите, что луч AC — биссектриса угла BAD.

б) Найдите CD, если известны диагонали трапеции: AC = 15 и BD = 8,5.

33. Прямая, проходящая через вершину B прямоугольника ABCD перпендикулярно диагонали AC, пересекает сторону AD в точке M, равноудалённой от вершин B и D.

а) Докажите, что ∠ ABM = ∠ DBC = 30°.

б) Найдите расстояние от центра прямоугольника до прямой CM, если BC = 9.

34. Прямая, проходящая через середину M гипотенузы AB прямоугольного треугольника ABC, перпендикулярна CM и пересекает катет AC в точке K. При этом AK: KC = 1: 2.

а) Докажите, что

б) Пусть прямые MK и BC пресекаются в точке P, а прямые AP и BK — в точке Q. Найдите KQ, если BC =

35. Точка E — середина боковой стороны CD трапеции ABCD. На стороне AB взяли точку K, так, что прямые CK и AE параллельны. Отрезки CK и BE пересекаются в точке O.

а) Докажите, что CO = KO.

б) Найти отношение оснований трапеции BC и AD, если площадь треугольника BCK составляет площади трапеции ABCD.

36. Точки E и K — соответственно середины сторон CD и AD квадрата ABCD. Прямая BE пересекается с прямой CK в точке O.

а) Докажите, что вокруг четырёхугольника ABOK можно описать окружность.

б) Найдите AO, если сторона квадрата равна 1.

37. Известно, что АBCD трапеция, АD = 2 BC, AD, BC — основания. Точка M такова, что углы АBM и MCD прямые.

а) Доказать, что MA = MD.

б) Расстояние от M до AD равно BC, а угол АDC равен 55°. Найдите угол BAD.

38. Дана равнобедренная трапеция, в которой AD = 3 BC, CM — высота трапеции.

а) Доказать, что M делит AD в отношении 2: 1.

б) Найдите расстояние от точки C до середины BD, если AD = 18, AC =

39. Дана трапеция с диагоналями равными 8 и 15. Сумма оснований равна 17.

а) Докажите, что диагонали перпендикулярны.

б) Найдите площадь трапеции.

40. Дана трапеция ABCD с основаниями AD и ВС, причем и точка M внутри трапеции, такая, что

а) Докажите, что АM = DM.

б) Найдите угол BAD, если угол CDA равен 50°, а высота, проведённая из точки M к АD, равна BC.

41. В треугольник ABC, в котором длина стороны AC меньше длины стороны BC, вписана окружность с центром O. Точка B 1 симметрична точке B относительно CO.

а) Докажите, что A, B, O и B 1 лежат на одной окружности.

б) Найдите площадь четырёхугольника AOBB 1, если AB = 10, AC = 6 и BC = 8.

42. В треугольнике ABC угол ABC тупой, H — точка пересечения продолжений высот, угол AHC равен 60°.

а) Докажите, что угол ABC равен 120°.

б) Найдите BH, если

43. В трапеции ABCD с основаниями ВС и AD углы ABD и ACD прямые.

а) Докажите, что АВ = CD.

б) Найдите AD, если AB = 2, BC = 7.

44. Точка Е — середина стороны квадрата АВСD. Серединные перпендикуляры к отрезкам АЕ и ЕС пересекаются в точке O.

а) Докажите, что .

б) Найдите .

45. Четырехугольник ABCD вписан в окружность с центром в точке О. Радиус АО перпендикулярен радиусу ОВ, а радиус ОС перпендикулярен радиусу OD.

а) Докажите, что ВС || AD.

б) Найдите площадь треугольника АОВ, если длина перпендикуляра, опущенного из точки С на AD, равна 9, а длина отрезка ВС в два раза меньше длины отрезка AD.

46. Из вершин А и В тупоугольного треугольника АВС проведены высоты BQ и AH. Известно, что угол В — тупой, BC: CH = 4: 5, BH = BQ.

А) Докажите, что диаметр описанной вокруг треугольника ABQ окружности в раз больше BQ.

Б) Найдите площадь четырехугольника AHBQ, если площадь треугольника HQC равна 25.

47. Дана трапеция ABCD с основаниями AD и ВС. Диагонали АС и BD пересекаются в точке О, а прямые АВ и CD — в точке К. Прямая КО пересекает стороны ВС и AD в точках М и N соответственно, и угол BAD равен 30°. Известно, что в трапеции ABMN и NMCD можно вписать окружность.

а) Докажите, что треугольник AKD тупоугольный.

б) Найти отношение площадей треугольника ВКС и трапеции ABCD.

48. На сторонах AC и BC треугольника ABC вне его построены квадраты ACDE и CBFG. Точка M — середина стороны AB.

а) Докажите, что точка M равноудалена от центров квадратов.

б) Найдите площадь треугольника DMG, если

49. Дана трапеция ABCD с основаниями BC и AD. Точки M и N являются серединами сторон AB и CD соответственно. Окружность, проходящая через точки B и С, пересекает отрезки BM и CN в точках P и Q (отличных от концов отрезков).

а) Докажите, что точки M, N, P и Q лежат на одной окружности.

б) Найдите QN, если отрезки DP и PC перпендикулярны, AB = 21, BC = 4, CD = 20, AD = 17.

50. Дана трапеция ABCD с основаниями BC и AD. Точки M и N являются серединами сторон AB и CD соответственно. Окружность, проходящая через точки B и С, пересекает отрезки BM и CN в точках P и Q (отличных от концов отрезков).

а) Докажите, что точки M, N, P и Q лежат на одной окружности.

б) Найдите радиус окружности, описанной около треугольника MPQ, если прямая DP перпендикулярна прямой PC, AB = 25, BC = 3, CD = 28, AD = 20.

51. Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

а) Докажите, что прямые AD и BC параллельны.

б) Найдите радиус окружности, описанной около треугольника BCD, если известно, что радиус первой окружности равен 4, а радиус второй окружности равен 1.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-11-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: