Общая характеристика протоколов мониторинга




Протокол SNMP

SNMP (англ. Simple Network Management Protocol — простой протокол управления сетью) — это протокол управления сетями связи на основе архитектуры TCP/IP.

На основе концепции TMN в 1980—1990 гг. различными органами стандартизации был выработан ряд протоколов управления сетями передачи данных с различным спектром реализации функций TMN. К одному из типов таких протоколов управления относится SNMP. Протокол SNMP был разработан с целью проверки функционирования сетевых маршрутизаторов и мостов. Впоследствии сфера действия протокола охватила и другие сетевые устройства, такие как хабы, шлюзы, терминальные сервера, LAN Manager сервера, машины под управлением Windows NT и т.д. Кроме того, протокол допускает возможность внесения изменений в функционирование указанных устройств.

Эта технология, призвана обеспечить управление и контроль за устройствами и приложениями в сети связи путём обмена управляющей информацией между агентами, располагающимися на сетевых устройствах, и менеджерами, расположенными на станциях управления. SNMP определяет сеть как совокупность сетевых управляющих станций и элементов сети (главные машины, шлюзы и маршрутизаторы, терминальные серверы), которые совместно обеспечивают административные связи между сетевыми управляющими станциями и сетевыми агентами.

При использовании SNMP присутствуют управляемые и управляющие системы. В состав управляемой системы входит компонент, называемый агентом, который отправляет отчёты управляющей системе. По существу SNMP агенты передают управленческую информацию на управляющие системы как переменные (такие как «свободная память», «имя системы», «количество работающих процессов»).

Агент в протоколе SNMP - это обрабатывающий элемент, который обеспечивает менеджерам, размещенным на управляющих станциях сети, доступ к значениям переменных MIB, и тем самым дает им возможность реализовывать функции по управлению и наблюдению за устройством.

Программный агент - резидентная программа, выполняющая функции управления, а также собирающая статистику для передачу ее в информационную базу сетевого устройства.

Аппаратный агент - встроенная аппаратура (с процессором и памятью), в которой хранятся программные агенты.

Переменные, доступные через SNMP, организованы в иерархии. Эти иерархии и другие метаданные (такие, как тип и описание переменной) описываются Базами Управляющей Информации (https://ru.wikipedia.org/wiki/%D0%90%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA Management Information Bases (MIBs)).

На сегодня существует несколько стандартов на базы данных управляющей информации [3, 4]. Основными являются стандарты MIB-I и MIB-II, а также версия базы данных для удаленного управления RMON MIB. Кроме этого, существуют стандарты для специальных MIB устройств конкретного типа (например, MIB для концентраторов или MIB для модемов), а также частные MIB конкретных фирм-производителей оборудования.

Первоначальная спецификация MIB-I определяла только операции чтения значений переменных. Операции изменения или установки значений объекта являются частью спецификаций MIB-II.

Версия MIB-I (RFC 1156) определяет до 114 объектов, которые подразделяются на 8 групп:

· System - общие данные об устройстве (например, идентификатор поставщика, время последней инициализации системы).

· Interfaces - описываются параметры сетевых интерфейсов устройства (например, их количество, типы, скорости обмена, максимальный размер пакета).

· AddressTranslationTable - описывается соответствие между сетевыми и физическими адресами (например, по протоколу ARP).

· InternetProtocol - данные, относящиеся к протоколу IP (адреса IP-шлюзов, хостов, статистика об IP-пакетах).

· ICMP - данные, относящиеся к протоколу обмена управляющими сообщениями ICMP.

· TCP - данные, относящиеся к протоколу TCP (например, о TCP-соединениях).

· UDP - данные, относящиеся к протоколу UDP (число переданных, принятых и ошибочных UPD-дейтаграмм).

· EGP - данные, относящиеся к протоколу обмена маршрутной информацией ExteriorGatewayProtocol, используемому в сети Internet (число принятых с ошибками и без ошибок сообщений).

Из этого перечня групп переменных видно, что стандарт MIB-I разрабатывался с жесткой ориентацией на управление маршрутизаторами, поддерживающими протоколы стека TCP/IP.

В версии MIB-II (RFC 1213), принятой в 1992 году, был существенно (до 185) расширен набор стандартных объектов, а число групп увеличилось до 10.


Агенты RMON

Новейшим добавлением к функциональным возможностям SNMP является спецификация RMON, которая обеспечивает удаленное взаимодействие с базой MIB.

Стандарт на RMON появился в ноябре 1991 года, когда Internet Engineering Task Force выпустил документ RFC 1271 под названием "Remote Network Monitoring Management Information Base" ("Информационная база дистанционного мониторинга сетей"). Данный документ содержал описание RMON для сетей Ethernet.

RMON — протокол мониторинга компьютерных сетей, расширение SNMP, в основе которого, как и в основе SNMP, лежит сбор и анализ информации о характере информации, передаваемой по сети. Как и в SNMP, сбор информации осуществляется аппаратно-программными агентами, данные от которых поступают на компьютер, где установлено приложение управления сетью. Отличие RMON от своего предшественника состоит, в первую очередь, в характере собираемой информации — если в SNMP эта информация характеризует только события, происходящие на том устройстве, где установлен агент, то RMON требует, чтобы получаемые данные характеризовали трафик между сетевыми устройствами.

До появления RMON протокол SNMP не мог использоваться удаленным образом, он допускал только локальное управление устройствами. База RMON MIB обладает улучшенным набором свойств для удаленного управления, так как содержит агрегированную информацию об устройстве, что не требует передачи по сети больших объемов информации. Объекты RMON MIB включают дополнительные счетчики ошибок в пакетах, более гибкие средства анализа графических трендов и статистики, более мощные средства фильтрации для захвата и анализа отдельных пакетов, а также более сложные условия установления сигналов предупреждения. Агенты RMON MIB более интеллектуальны по сравнению с агентами MIB-I или MIB-II и выполняют значительную часть работы по обработке информации об устройстве, которую раньше выполняли менеджеры. Эти агенты могут располагаться внутри различных коммуникационных устройств, а также быть выполнены в виде отдельных программных модулей, работающих на универсальных ПК и ноутбуках (примером может служить LANalyzerNovell).

Интеллект агентов RMON позволяет им выполнять простые действия по диагностике неисправностей и предупреждению о возможных отказах - например, в рамках технологии RMON можно собрать данные о нормальном функционировании сети (т. е. выполнить так называемый baselining), а потом выставлять предупреждающие сигналы, когда режим работы сети отклонится от baseline - это может свидетельсствовать, в частности, о неполной исправности оборудования. Собрав воедино информацию, получаемую от агентов RMON, приложение управления может помочь администратору сети (находящемуся, например, за тысячи километров от анализируемого сегмента сети) локализовать неисправность и выработать оптимальный план действий для ее устранения.

Сбор информации RMON осуществляется аппаратно-программными зондами, подключаемыми непосредственно к сети. Чтобы выполнить задачу сбора и первичного анализа данных, зонд должен обладать достаточными вычислительными ресурсами и объемом оперативной памяти. В настоящее время на рынке имеются зонды трех типов: встроенные, зонды на базе компьютера, и автономные. Продукт считается поддерживающим RMON, если в нем реализована хотя бы одна группа RMON. Разумеется, чем больше групп данных RMON реализовано в данном продукте, тем он, с одной стороны, дороже, а с другой - тем более полную информацию о работе сети он предоставляет.

Встроенные зонды представляют собой модули расширения для сетевых устройств. Такие модули выпускаются многими производителями, в частности, такими крупными компаниями, как 3Com, Cabletron, Bay Networks и Cisco. (Кстати, 3Com и Bay Networks недавно приобрели компании Axon и ARMON, признанных лидеров в области разработки и производства средств управления RMON. Такой интерес к этой технологии со стороны крупнейших производителей сетевого оборудования лишний раз показывает, насколько нужным для пользователей является дистанционный мониторинг.) Наиболее естественным выглядит решение встраивать модули RMON в концентраторы, ведь именно из наблюдения за этими устройствами можно составить себе представление о работе сегмента. Достоинство таких зондов очевидно: они позволяют получать информацию по всем основным группам данных RMON при относительно невысокой цене. Недостатком в первую очередь является не слишком высокая производительность, что проявляется, в частности, в том, что встроенные зонды часто поддерживают далеко не все группы данных RMON. Не так давно 3Com объявила о намерении выпустить поддерживающие RMON драйверы для сетевых адаптеров Etherlink III и Fast Ethernet. В результате окажется возможным собирать и анализировать данные RMON непосредственно на рабочих станциях в сети.

Зонды на базе компьютера - это просто подключенные к сети компьютеры с установленным на них программным агентом RMON. Такие зонды (к числу которых относится, например, продукт Cornerstone Agent 2.5 компании Network General) обладают более высокой производительностью, чем встроенные зонды, и поддерживают, как правило, все группы данных RMON. Они более дороги, чем встроенные зонды, но гораздо дешевле автономных зондов. Помимо этого, зонды на базе компьютера имеют довольно большой размер, что может иногда ограничивать возможности их применения.

Автономные зонды обладают наивысшей производительностью; как легко понять, это одновременно и наиболее дорогие продукты из всех описанных. Как правило, автономный зонд - это процессор (класса i486 или RISC-процессор), оснащенный достаточным объемом оперативной памяти и сетевым адаптером. Лидерами в этом секторе рынка являются компании Frontier и Hewlett-Packard. Зонды этого типа невелики по размеру и весьма мобильны - их очень легко подключать к сети и отключать от нее. При решении задачи управления сетью глобального масштаба это, конечно, не слишком важное свойство, однако если средства RMON применяются для анализа работы корпоративной сети средних размеров, то (учитывая высокую стоимость устройств) мобильность зондов может сыграть весьма положительную роль.

Объекту RMON присвоен номер 16 в наборе объектов MIB, а сам объект RMON объединяет в соответствии с документом RFC 1271, состоит из десяти групп данных.

· Statistics - текущие накопленные статистические данные о характеристиках пакетов, количестве коллизий и т.п.

· History - статистические данные, сохраненные через определенные промежутки времени для последующего анализа тенденций их изменений.

· Alarms - пороговые значения статистических показателей, при превышении которых агент RMON посылает сообщение менеджеру. Позволяет пользователю определить ряд пороговых уровней (эти пороги могут отнситься к самым разным вещам - любому параметру из группы статистики, амплитуде или скорости его изменения и многому другому), по превышении которых генерируется аварийный сигнал. Пользователь может также определить, при каких условиях превышение порогового значения должно сопровождаться аварийным сигналом - это позволит избежать генерации сигнала "по пустякам", что плохо, во-первых, потому, что на постоянно горящую красную лампочку никто не обращает внимания, а во-вторых, потому, что передача ненужных аварийных сигналов по сети приводит к излишней загрузке линий связи. Аварийный сигнал, как правило, передается в группу событий, где и определяется, что с ним делать дальше.

· Host - данных о хостах сети, в том числе и об их MAC-адресах..

· HostTopN - таблица наиболее загруженных хостов сети. Таблица N главных хостов (HostTopN) содержит список N первых хостов, характеризующихся максимальным значением заданного статистического параметра для заданного интервала. Например, можно затребовать список 10 хостов, для которых наблюдалось максимальное количество ошибок в течение последних 24 часов. Список этот будет составлен самим агентом, а приложение управления получит только адреса этих хостов и значения соответствующих статистических параметров. Видно, до какой степени такой подход экономит сетевые ресурсы

· TrafficMatrix - статистика об интенсивности трафика между каждой парой хостов сети, упорядоченная в виде матрицы. Строки этой матрицы пронумерованы в соответствии с MAC-адресами станций - источников сообщений, а столбцы - в соответствии с адресами станций-получателей. Матричные элементы характеризуют интенсивность трафика между соответствующими станциями и количество ошибок. Проанализировав такую матрицу, пользователь легко может выяснить, какие пары станций генерируют наиболее интенсивный трафик. Эта матрица, опять-таки, формируется самим агентом, поэтому отпадает необходимость в передаче больших объемов данных на центральный компьютер, отвечающий за управление сетью.

· Filter - условия фильтрации пакетов. Признаки, по которым фильтруются пакеты, могут быть самыми разнообразными - например, можно потребовать отфильтровывать как ошибочные все пакеты, длина которых оказывается меньше некоторого заданного значения. Можно сказать, что установка фильтра соответствует как бы организации канала для передачи пакета. Куда ведет этот канал - определяет пользователь. Например, все ошибочные пакеты могут перехватываться и направляться в соответсвующий буфер. Кроме того, появление пакета, соответствующего установленному фильтру, может рассматриваться как событие (event), на которое система должна реагировать заранее оговоренным образом.

· PacketCapture - условия захвата пакетов. В состав группы перехвата пакетов (packet capture) входят буфера для захвата, куда направляются пакеты, чьи признаки удовлетворяют условиям, сформулированным в группе фильтров. При этом захватываться может не пакет целиком, а, скажем, только первые несколько десятков байт пакета. Содержимое буферов перехвата можно впоследствии анализировать при помощи различных программных средств, выясняя целый ряд весьма полезных характеристик работы сети. Перестраивая фильтры на те или иные признаки, можно характеризовать разные параметры работы сети.

· Event - условия регистрации и генерации событий. В группе событий (events) определяется, когда следует отправлять аварийный сигнал приложению управления, когда - перхватывать пакеты, и вообще - как реагировать на те или иные события, происходящие в сети, например, на превышение заданных в группе alarms пороговых значений: следует ли ставить в известность приложение управления, или надо просто запротоколировать данное событие и продолжать работать. События могут и не быть связаны с предачей аварийных сигналов - например, направление пакета в буфер перехвата тоже представляет собой событие.

Данные группы пронумерованы в указанном порядке, поэтому, например, группа Hosts имеет числовое имя 1.3.6.1.2.1.16.4.

Десятую группу составляют специальные объекты протокола TokenRing.

Всего стандарт RMON MIB определяет около 200 объектов в 10 группах, зафиксированных в двух документах - RFC 1271 для сетей Ethernet и RFC 1513 для сетей TokenRing.

Отличительной чертой стандарта RMON MIB является его независимость от протокола сетевого уровня (в отличие от стандартов MIB-I и MIB-II, ориентированных на протоколы TCP/IP). Поэтому, его удобно использовать в гетерогенных средах, использующих различные протоколы сетевого уровня.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: