Следствия теории относительности




Относительность одновременности. Одновременность двух событий относительна. Если события, происшедшие в разных точках, одновременны в одной инерциальной системе отсчета, то они могут быть не одновременными в других инерциальных системах отсчета.[9]

Сокращение длины. Длина тела, измеренная в системе отсчета K', в которой оно покоится, больше длины в системе отсчета K, относительно которой K' движется со скоростью v вдоль оси Ох:

(1)

Где – Длина тела в системе отсчета, относительно которой тело покоится

– Длина тела в системе отсчета, относительно которой тело движется со скоростью v

v – Скорость системы отсчета

c – Скорость света

Замедление времени. Промежуток времени, измеренный часами, неподвижными в инерциальной системе отсчета K', меньше промежутка времени, измеренного в инерциальной системе отсчета K, относительно которой K' движется со скоростью v:

(2)

Где промежуток времени в неподвижной системе отсчета

t Промежуток времени в системе отсчета, которая движется со скоростью v

v – Скорость системы отсчета

c – Скорость света


 

3 СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

Формирование теории

Специальная теория относительности Эйнштейна практически полностью была основана на его мысленных экспериментах и только впоследствии была подтверждена на практике. Так ещё в 1895 году (в возрасте всего 16 лет) он задумался о том, что будет, если двигаться параллельно лучу света с его скоростью? В такой ситуации получалось, что для стороннего наблюдателя частицы света должны были колебаться вокруг одной точки, что противоречило уравнениям Максвелла и принципу относительности (который гласил, что физические законы не зависят от места, где вы находитесь и скорости, с которой вы движетесь). Таким образом, юный Эйнштейн пришёл к выводу, что скорость света должна быть недостижима для материального тела.[8]

Следующий эксперимент (Рисунок 4) был проведён им в 1905 году и заключался в том, что на концах движущегося поезда находятся два импульсных источника света, которые зажигаются в одно время.


Для стороннего наблюдателя, мимо которого проходит поезд, оба этих

Рисунок 4. Эксперимент

 

 

события происходят одновременно, однако для наблюдателя, находящегося в центре поезда эти события будут казаться произошедшими в разное время, так как вспышка света из начала вагона придёт раньше, чем из его конца (вследствие постоянности скорости света).[8]

Основные постулаты

Эйнштейн начал свою статью с заявления о том, что его теории не только описывают свойства света, но раскрывают истины о самой Вселенной. Ученый сделал все выводы из двух простых постулатов, относящихся к инерциальным системам отсчета (то есть к объектам, движущимся с постоянной скоростью относительно друг друга):

- Законы физики одинаковы во всех инерциальных системах отсчета.

- Скорость света постоянна во всех инерциальных системах отсчета.

Эти два обманчиво простых принципа знаменуют глубочайшее проникновение в природу Вселенной со времен Ньютона. Из них можно вывести совершенно новую картину пространства и времени.

Следствия

Путём расчётов на основе этих двух постулатов Эйнштейн пришёл к выводу, что время для движущегося в корабле наблюдателя должно замедляться с увеличением скорости, а сам он вместе с кораблём должен сокращаться в размерах и в направлении движения (для того чтобы скомпенсировать тем самым эффекты от движения и соблюсти принцип относительности). Из условия конечности скорости для материального тела вытекало также, что правило сложения скоростей должно быть заменено более сложными преобразованиями Лоренца – в таком случае даже если мы сложим две скорости в 99% от скорости света мы получим 99,995% от этой скорости, но не превысим её.[8]

 

 

4 ОБЩАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ

Теория гравитации

Когда Эйнштейн упомянул о своем желании решить проблему гравитации, ему было сказано две вещи: первое, — что это просто невозможно сделать, а второе заключается в том, что никто не поверит ему, даже если бы он это сделал. В ответ он создал свое величайшее творение — Общую теорию относительности.

Общая теория относительности сделала для гравитации то, что даже Ньютон не смог сделать, — дала ей объяснение, показала закономерность, благодаря которой вещи падают, вращаются на орбите и искажают время. Фактически, создание общей теории относительности связано с противостоянием, с Ньютоном и его представлениями о гравитации, которая им описывалась как таинственная сила, сближающая объекты. Хотя, даже сам Ньютон не понимал, как это работает, поскольку сила притяжения действует через пустое пространство, и горько критиковал свою собственную теорию гравитации.

Тем не менее, несмотря на вопросы, которые остались без ответа, формулы Ньютона для гравитации всё еще использовались в течение десятилетий, как основа для универсальных законов физики, чтобы точно предсказывать движения планет и даже отправить людей на Луну.

Зарождение термина

Ньютоновская гравитация была сформулирована главным образом для объяснения двух вещей. Первым был вопрос о том, почему объекты разного веса падают на землю одновременно. Например, если бы не сопротивление воздуха, перо и свинцовый шар при падении приземлились бы одновременно. Два камня разных размеров и веса также будут приземляться на землю одновременно.[6]

Другой вопрос, который Ньютон попытался решить, — это орбиты небесных тел, почему Луна вращается вокруг Земли, а Земля — вокруг Солнца. В конечном счете, ответ Ньютона на это заключался в том, что гравитация — это сила, пропорциональная массе объекта. Чем больше масса объекта, тем сильнее его гравитационное притяжение.

Но проблема ньютоновской гравитации заключается в её действии на расстоянии. Силы зависят от массы объектов и от расстояния между ними. Проблема с этим в том, что сила не имеет носителя, она действует в пустом пространстве. Также проблема в том, что она нарушает «ограничение скорости» Вселенной: ничто не может двигаться быстрее скорости света. Если объект изменил свое положение во Вселенной, силы притяжения, с которой он действует на другие объекты, мгновенно изменились бы, нарушив это ограничение скорости.[6]

В попытке решить проблему гравитации Эйнштейн впервые придумал Специальную теорию относительности, которая учитывала только объекты, движущиеся по прямой и с постоянной скоростью. Однако она не включала ускорения, и Эйнштейн стремился создать теорию, которая могла бы применяться более широко. Так родился термин Общая теория относительности.

Эксперимент Эйнштейна

В начале 1900-х Эйнштейн провел мысленный эксперимент. Он смотрел в окно и представлял себе человека, падающего с крыши. Когда человек падал, он чувствовал себя невесомым. Но что если бы этот человек был в падающем лифте? Лифт будет двигаться с той же скоростью, что и человек, который также почувствует себя невесомым (рисунок 5). [6]

Рисунок 5. Невесомость в падающем лифте.

Именно тогда Эйнштейн понял, что происходит. Вопреки теории Ньютона, не было никакой гравитационной силы, тянущей объекты вниз. Вместо этого пространство вокруг них было изогнуто, подталкивая оба объекта к земле. Оно толкало, а не притягивало, как это считалось в теории притяжения Ньютона. Последствия этого открытия были удивительными. Это означало, что пространство является гибким, его можно складывать и изгибать. Эйнштейн объединил пространство и время в так называемый пространственно-временной континуум.

В то время как естественное движение вещей состоит в том, чтобы следовать простейшему пути через пространство-время, масса изгибает окружающее её пространство так, что мы движемся к центрам большей массы. Это и есть сила, которую мы называем гравитацией.

Применение

Применений общей теории относительности гораздо больше. Это был один из величайших даров Эйнштейна миру, и он продолжает проходить тестирование. Но это действительно рисует довольно странную картину Вселенной — ту, где червоточины могут существовать, и параллельные линии могут в конечном итоге расходиться. Мы до сих пор всё еще обсуждаем эту теорию. Мы продолжаем использовать слово «гравитация», и мы продолжаем думать с точки зрения ньютоновской гравитации, потому что это более понятно для нашего ума, чем изогнутое пространство-время. [6]

5 ПУТЕШЕСТВИЕ ВО ВРЕМЕНИ

Почему это возможно?

Квантовая физика лежит на границе академической физики и научной фантастики. Классические физики относятся к ней с настороженностью, потому что они о том, что происходит после создания материи. Однако Альберт Эйнштейн внес большой вклад в развитие этой науки, и именно его теории первыми указали на возможность путешествия во времени.

- Эйнштейн и Хокинг говорили о возможности путешествия во времени;

- Путешествие в будущее возможно - для физиков это факт;

- Сдвиг назад во времени вызывает больше споров;

- Некоторые физики утверждают, что можно построить машину для путешествия во времени. [7]

Кинематограф и физика

Большинство детей, по крайней мере, с 80-х и 90-х годов, мечтали о возможности путешествовать во времени. Культовые фильмы, такие как «Назад в будущее» (рисунок 6), «Терминатор» и «Параллельные миры», способствовали этому. Все они были основаны на теориях Альберта Эйнштейна с концепцией пространственно-временного туннеля (также известного как "Мост Эйнштейна-Розена") и теории относительности. И, вопреки внешнему виду, они были не так маловероятны, как могло бы показаться. [7]


Рисунок 6. «Назад в будущее»



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-07-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: