Симметричные и асимметричные криптосистемы





 

Прежде чем перейти к отдельным алгоритмам, рассмотрим вкратце концепцию симметричных и асимметричных криптосистем. Сгенерировать секретный ключ и зашифровать им сообщение – это еще полдела. А вот как переслать такой ключ тому, кто должен с его помощью расшифровать исходное сообщение? Передача шифрующего ключа считается одной из основных проблем криптографии.

Оставаясь в рамках симметричной системы, необходимо иметь надежный канал связи для передачи секретного ключа. Но такой канал не всегда бывает доступен, и потому американские математики Диффи, Хеллман и Меркле разработали в 1976 г. концепцию открытого ключа и асимметричного шифрования.

В таких криптосистемах общедоступным является только ключ для процесса шифрования, а процедура дешифрования известна лишь обладателю секретного ключа. Например, когда я хочу, чтобы мне выслали сообщение, то генерирую открытый и секретный ключи. Открытый посылаю вам, вы шифруете им сообщение и отправляете мне. Дешифровать сообщение могу только я, так как секретный ключ я никому не передавал. Конечно, оба ключа связаны особым образом (в каждой криптосистеме по-разному), и распространение открытого ключа не разрушает криптостойкость системы.

В асимметричных системах должно удовлетворяться следующее требование: нет такого алгоритма (или он пока неизвестен), который бы из криптотекста и открытого ключа выводил исходный текст.

 

Основные современные методы шифрования

 

Среди разнообразнейших способов шифровании можно выделить следующие основные методы:

• Алгоритмы замены или подстановки – символы исходного текста заменяются на символы другого (или того же) алфавита в соответствии с заранее определенной схемой, которая и будет ключом данного шифра. Отдельно этот метод в современных криптосистемах практически не используется из-за чрезвычайно низкой криптостойкости.

• Алгоритмы перестановки – символы оригинального текста меняются местами по определенному принципу, являющемуся секретным ключом. Алгоритм перестановки сам по себе обладает низкой криптостойкостью, но входит в качестве элемента в очень многие современные криптосистемы.

• Алгоритмы гаммирования – символы исходного текста складываются с символами некой случайной последовательности. Самым распространенным примером считается шифрование файлов «имя пользователя .рwl», в которых операционная система Microsoft Windows 95 хранит пароли к сетевым ресурсам данного пользователя (пароли на вход в NT-серверы, пароли для DialUр-доступа в Интернет и т.д.).

• Алгоритмы, основанные на сложных математических преобразованиях исходного текста по некоторой формуле. Многие из них используют нерешенные математические задачи. Например, широко используемый в Интернете алгоритм шифрования RSA основан на свойствах простых чисел.

• Комбинированные методы. Последовательное шифрование исходного текста с помощью двух и более методов.

 

Комбинированные методы шифрования

Одним из важнейших требований, предъявляемых к системе шифрования, является ее высокая стойкость. Однако повышение стойкости любого метода шифрования приводит, как правило, к существенному усложнению самого процесса шифрования и увеличению затрат ресурсов (времени, аппаратных средств, уменьшению пропускной способности и т.п.).

Достаточно эффективным средством повышения стойкости шифрования является комбинированное использование нескольких различных способов шифрования, т.е. последовательное шифрование исходного текста с помощью двух или более методов.

Как показали исследования, стойкость комбинированного шифрования не ниже произведения стойкостей используемых способов.

Вообще говоря, комбинировать можно любые методы шифрования и в любом количестве, однако на практике наибольшее распространение получили следующие комбинации:

1) подстановка + гаммирование;

2) перестановка + гаммирование;

3) гаммирование + гаммирование;

4) подстановка + перестановка;

Типичным примером комбинированного шифра является национальный стандарт США криптографического закрытия данных (DES).

 

Алгоритм DES

 

Стандарт шифрования данных DES опубликован в 1977 г. Национальным бюро стандартом США.

Стандарт DES предназначен для защиты от несанкционированного доступа к важной, но несекретной информации в государственных и коммерческих организациях США. Алгоритм, положенный в основу стандарта, распространялся достаточно быстро, и уже в 1980 г. Был одобрен Национальным институтом стандартов и технологий США. С этого момента DES превращается в стандарт не только по названию, но и фактически. К настоящему времени DES является наиболее распространенным алгоритмом, используемым в системах защиты коммерческой информации. Более того, реализация алгоритма DES в таких системах становится признаком хорошего тона.

Основные достоинства алгоритма DES:

· используется только один ключ длиной 56 битов;

· зашифровав сообщение с помощью одного пакета, для расшифровки вы можете использовать любой другой;

· относительная простота алгоритма обеспечивает высокую скорость обработки информации;

· достаточно высокая стойкость алгоритма.

DES осуществляет шифрование 64-битовых блоков данных с помощью 56-битового ключа. Расшифровка в DES является операцией обратной шифрованию и выполняется путем повторения операций шифрования в обратной последовательности (несмотря на кажущуюся очевидность, так делается далеко не всегда; позже мы рассмотрим шифры, в которых шифрование и расшифровка осуществляются по разным алгоритмам).

Процесс шифрования заключается в начальной перестановке битов 64-битового блока, шестнадцати циклах шифрования и, наконец, обратной перестановки битов (рис. 1).

Рис. 1

Необходимо сразу же отметить, что ВСЕ таблицы, приведенные в данной статье, являются СТАНДАРТНЫМИ, а следовательно должны включаться в вашу реализацию алгоритма в неизменном виде.

Рис. 2. Структура алгоритма шифрования DES

Пусть из файла считан очередной 8-байтовый блок T, который преобразуется с помощью матрицы начальной перестановки IP (табл. 1) следующим образом: бит 58 блока T становится битом 1, бит 50 – битом 2 и т.д., что даст в результате: T(0) = IP(T).

Полученная последовательность битов T(0) разделяется на две последовательности по 32 бита каждая: L(0) – левые или старшие биты, R(0) – правые или младшие биты.

Таблица 1: Матрица начальной перестановки IP

58 50 42 34 26 18 10 02

60 52 44 36 28 20 12 04

62 54 46 38 30 22 14 06

64 56 48 40 32 24 16 08

57 49 41 33 25 17 09 01

59 51 43 35 27 19 11 03

61 53 45 37 29 21 13 05

63 55 47 39 31 23 15 07

Затем выполняется шифрование, состоящее из 16 итераций. Результат i-й итерации описывается следующими формулами:

L(i) = R (i-1)

R(i) = L (i-1) xor f (R(i-1), K(i)),

где xor – операция ИСКЛЮЧАЮЩЕЕ ИЛИ.

Функция f называется функцией шифрования. Ее аргументы – это 32-битовая последовательность R (i-1), полученная на (i-1) – ой итерации, и 48-битовый ключ K(i), который является результатом преобразования 64-битового ключа K. Подробно функция шифрования и алгоритм получения ключей К(i) описаны ниже.

На 16-й итерации получают последовательности R(16) и L(16) (без перестановки), которые конкатенируют в 64-битовую последовательность R(16) L(16).

Затем позиции битов этой последовательности переставляют в соответствии с матрицей IP-1 (табл. 2).

Таблица 2: Матрица обратной перестановки IP-1

40 08 48 16 56 24 64 32

39 07 47 15 55 23 63 31

38 06 46 14 54 22 62 30

37 05 45 13 53 21 61 29

36 04 44 12 52 20 60 28

35 03 43 11 51 19 59 27

34 02 42 10 50 18 58 26

33 01 41 09 49 17 57 25

Матрицы IP-1 и IP соотносятся следующим образом: значение 1-го элемента матрицы IP-1 равно 40, а значение 40-го элемента матрицы IP равно 1, значение 2-го элемента матрицы IP-1 равно 8, а значение 8-го элемента матрицы IP равно 2 и т.д.

Процесс расшифровки данных является инверсным по отношению к процессу шифрования. Все действия должны быть выполнены в обратном порядке. Это означает, что расшифровываемые данные сначала переставляются в соответствии с матрицей IP-1, а затем над последовательностью бит R(16) L(16) выполняются те же действия, что и в процессе шифрования, но в обратном порядке.

Итеративный процесс расшифровки может быть описан следующими формулами:

R (i-1) = L(i), i = 1, 2,…, 16;

L (i-1) = R(i) xor f (L(i), K(i)), i = 1, 2,…, 16.

На 16-й итерации получают последовательности L(0) и R(0), которые конкатенируют в 64-битовую последовательность L(0) R(0).

Затем позиции битов этой последовательности переставляют в соответствии с матрицей IP. Результат такой перестановки – исходная 64-битовая последовательность.

Теперь рассмотрим функцию шифрования f (R(i-1), K(i)). Схематически она показана на рис. 3.

Рис. 3. Вычисление функции f (R(i-1), K(i))

 

Для вычисления значения функции f используются следующие функции-матрицы:

Е – расширение 32-битовой последовательности до 48-битовой,

S1, S2,…, S8 – преобразование 6-битового блока в 4-битовый,

Р – перестановка бит в 32-битовой последовательности.

Функция расширения Е определяется табл. 3. В соответствии с этой таблицей первые 3 бита Е (R(i-1)) – это биты 32, 1 и 2, а последние – 31, 32.

Таблица 3: Функция расширения E

32 01 02 03 04 05

04 05 06 07 08 09

08 09 10 11 12 13

12 13 14 15 16 17

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 01

Результат функции Е (R(i-1)) есть 48-битовая последовательность, которая складывается по модулю 2 (операция xor) с 48-битовым ключом К(i). Получается 48-битовая последовательность, которая разбивается на восемь 6-битовых блоков B(1) B(2) B(3) B(4) B(5) B(6) B(7) B(8). То есть:

E (R(i-1)) xor K(i) = B(1) B(2)… B(8).

Функции S1, S2,…, S8 определяются табл. 4.

Таблица 4

К табл. 4. требуются дополнительные пояснения. Пусть на вход функции-матрицы Sj поступает 6-битовый блок B(j) = b1b2b3b4b5b6, тогда двухбитовое число b1b6 указывает номер строки матрицы, а b2b3b4b5 – номер столбца. Результатом Sj (B(j)) будет 4-битовый элемент, расположенный на пересечении указанных строки и столбца.

Например, В(1)=011011. Тогда S1 (В(1)) расположен на пересечении строки 1 и столбца 13. В столбце 13 строки 1 задано значение 5. Значит, S1 (011011)=0101.

Применив операцию выбора к каждому из 6-битовых блоков B(1), B(2),…, B(8), получаем 32-битовую последовательность S1 (B(1)) S2 (B(2)) S3 (B(3))… S8 (B(8)).

Наконец, для получения результата функции шифрования надо переставить биты этой последовательности. Для этого применяется функция перестановки P (табл. 5). Во входной последовательности биты перестанавливаются так, чтобы бит 16 стал битом 1, а бит 7 – битом 2 и т.д.

Таблица 5: Функция перестановки P

16 07 20 21

29 12 28 17

01 15 23 26

05 18 31 10

02 08 24 14

32 27 03 09

19 13 30 06

22 11 04 25

Таким образом,

f (R(i-1), K(i)) = P (S1 (B(1)),… S8 (B(8)))

Чтобы завершить описание алгоритма шифрования данных, осталось привести алгоритм получения 48-битовых ключей К(i), i=1…16. На каждой итерации используется новое значение ключа K(i), которое вычисляется из начального ключа K. K представляет собой 64-битовый блок с восемью битами контроля по четности, расположенными в позициях 8,16,24,32,40,48,56,64.

Для удаления контрольных битов и перестановки остальных используется функция G первоначальной подготовки ключа (табл. 6).

 

Таблица 6

Матрица G первоначальной подготовки ключа

57 49 41 33 25 17 09

01 58 50 42 34 26 18

10 02 59 51 43 35 27

19 11 03 60 52 44 36

63 55 47 39 31 23 15

07 62 54 46 38 30 22

14 06 61 53 45 37 29

21 13 05 28 20 12 04

Результат преобразования G(K) разбивается на два 28-битовых блока C(0) и D(0), причем C(0) будет состоять из битов 57, 49,…, 44, 36 ключа K, а D(0) будет состоять из битов 63, 55,…, 12, 4 ключа K. После определения C(0) и D(0) рекурсивно определяются C(i) и D(i), i=1…16. Для этого применяют циклический сдвиг влево на один или два бита в зависимости от номера итерации, как показано в табл. 7.

Номер итерации Сдвиг (бит)

Таблица 7. Таблица сдвигов для вычисления ключа

Полученное значение вновь «перемешивается» в соответствии с матрицей H (табл. 8).

Таблица 8: Матрица H завершающей обработки ключа

14 17 11 24 01 05

03 28 15 06 21 10

23 19 12 04 26 08

16 07 27 20 13 02

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32

Ключ K(i) будет состоять из битов 14, 17,…, 29, 32 последовательности C(i) D(i). Таким образом:

K(i) = H (C(i) D(i))

Блок-схема алгоритма вычисления ключа приведена на рис. 4.

Рис. 4. Блок-схема алгоритма вычисления ключа K(i)

Восстановление исходного текста осуществляется по этому алгоритму, но вначале вы используете ключ K(15), затем – K(14) и так далее. Теперь вам должно быть понятно, почему автор настойчиво рекомендует использовать приведенные матрицы. Если вы начнете самовольничать, вы, должно быть, получите очень секретный шифр, но вы сами не сможете его потом раскрыть!

 





Читайте также:
Ограждение места работ сигналами на перегонах и станциях: Приступать к работам разрешается только после того, когда...
Тест Тулуз-Пьерон (корректурная проба): получение информации о более общих характеристиках работоспособности, таких как...
Теория по геометрии 7-9 класс: Смежные углы – два угла, у которых одна...

Рекомендуемые страницы:



Вам нужно быстро и легко написать вашу работу? Тогда вам сюда...

Поиск по сайту

©2015-2021 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:

Мы поможем в написании ваших работ! Мы поможем в написании ваших работ! Мы поможем в написании ваших работ!
Обратная связь
0.04 с.