Спектры испускания (излучения)




Виды излучений. Спектры

Свет – электромагнитная волна с длиной волны 400 нм -800нм. Электромагнитные волны излучаются при ускоренном движении частиц. Эти заряженные частицы входят в состав атомов, из которых состоит вещество. Для того, чтобы атом начал излучать, ему необходимо передать энергию. Излучая, атом теряет полученную энергию и для свечения вещества необходим приток энергии к атомам извне.

В зависимости от способа возбуждения атомов источника света излучения называют:

Тепловое излучение - При столкновении быстрых атомов (или молекул) друг с другом часть их кинетической энергии превращается в энергию возбуждения атомов, которые затем излучают свет (Солнце, лампа накаливания, пламя и др.)

Электролюминисценция - При разряде в газе электрическое поле увеличивает кинетическую энергию электронов. Быстрые электроны возбуждают атомы в результате неупругого соударения с ними. Возбужденные атомы отдают энергию в виде световых волн (трубки для рекламных надписей, северное сияние и другие)

Катодолюминисценция - Свечение твердых тел, вызванное бомбардировкой этих тел электронами (электронно-лучевые трубки телевизоров)

Хемилюминисценция - Электроны возбуждаются от химических реакций (светлячки и другие живые организмы, бактерии, насекомые, многие рыбы)

Фотолюминисценция - Падающий на вещество свет возбуждает атомы вещества, после чего они излучают свет (светящиеся краски).

Спектр – набор длин волн или частот, излучаемых или поглощаемых веществом.

Слово «спектр» в физику ввел Ньютон. В переводе с классической латыни слово «спектр» означает «дух», «привидение», что довольно точно отражает суть явления – возникновение радуги при прохождении бесцветного солнечного света через прозрачную призму.

Все источники не дают свет строго определенной длины волны. Распределение излучения по частотам характеризуется спектральной плотностью интенсивности изл Типы спектров:

Спектры испускания (излучения)

Совокупность частот или длин волн, которые содержатся в излучении какого-либо вещества, называют спектром испускания. Они бывают трех видов.

1) Сплошной - В наблюдаемых спектрах мы видим все цвета радуги, то есть волны всех длин. В спектре нет разрывов и он представляет сплошную, непрерывную разноцветную полосу. Такие спектры называют непрерывными или сплошными. Солнечный спектр или спектр дугового фонаря является непрерывным. Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры. Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом. Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

2) Линейчатый спектр - Каждый из спектров - это частокол цветных линий различной яркости, разделённых широкими тёмными полосами. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). Каждая из линий имеет конечную ширину.

Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров. Изолированные атомы данного химического элемента излучают строго определенные длины волн. При увеличении плотности атомарного газа отдельные спектральные линии расширяются и, наконец при очень большой плотности газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.

3)Полосатые спектры - Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий, разделённых тёмными промежутками. Это полосатый спектр. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Спектры поглощения.

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету и поглощает все остальные. Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра - это линии поглощения, образующие в совокупности спектр поглощения.

Атомы любого химического элемента дают спектр, не похожий на спектры всех других элементов: они способны излучать строго-определенный набор длин волн.

На этом основан спектральный анализ - метод определения химического состава вещества по его спектру. Подобно отпечаткам пальцев у людей линейчатые спектры имеют неповторимую индивидуальность.

С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества, если даже его масса не превышает 10-10г. Это очень чувствительный метод. Количественное содержание элемента в исследуемом образце определяется путем сравнения интенсивности отдельных линий спектра этого элемента с интенсивностью линий другого химического элемента, количественное содержание которого в образце известно. Количественный анализ состава вещества по его спектру затруднен, так как яркость спектральных линий зависит не только от массы вещества, но и от способа возбуждения свечения. Так, при низких температурах многие спектральные линии вообще не появляются. Однако при соблюдении стандартных условий возбуждения свечения можно проводить и количественный спектральный анализ. В настоящее время определены спектры всех атомов и составлены таблицы спектров. С помощью спектрального анализа были открыты многие новые элементы: рубидий, цезий и др. Элементам часто давали названия в соответствии с цветом наиболее интенсивных линий спектра. Рубидий дает темно-красные, рубиновые линии. Слово цезий означает «небесно-голубой». Это цвет основных линий спектра цезия.

Два вида спектрального анализа: 1) качественный (из каких атомов состоит вещество); 2) количественный (сколько атомов в веществе).

Применение спектрального анализа:

Металлургия, машиностроение, атомная индустрия

Благодаря сравнительной простоте и универсальности спектральный анализ является основным методом контроля состава вещества в металлургии, машиностроении, атомной индустрии. С помощью спектрального анализа определяют химический состав руд и минералов. Состав сложных, главным образом органических, смесей анализируется по их молекулярным спектрам

Криминалистика

Спектральный анализ широко применяют в криминалистике, для расследования улик, найденных на месте преступления. Также спектральный анализ в криминалистике хорошо помогает определять орудие убийства и вообще раскрывать некоторые частности преступления

Астрофизика.

Астрофизика –раздел физики по определению химического состава звёзд, газовых облаков и т.д. и их физических характеристик: температуры, давления, скорости движения, магнитной индукции. С помощью спектрального анализа узнали химический состав Солнца и звезд, комет. Другие методы анализа здесь вообще невозможны. Оказалось, что звезды состоят из тех же самых химических элементов, которые имеются и на Земле. Любопытно, что гелий первоначально открыли на Солнце и лишь затем нашли в атмосфере Земли. Название этого элемента напоминает об истории его открытия: слово гелий означает в переводе «солнечный». Спектральный анализ можно производить не только по спектрам испускания, но и по спектрам поглощения. Именно линии поглощения в спектре Солнца и звезд позволяют исследовать химический состав этих небесных тел. Ярко светящаяся поверхность Солнца - фотосфера - дает непрерывный спектр. Солнечная атмосфера поглощает избирательно свет от фотосферы, что приводит к появлению линий поглощения на фоне непрерывного спектра фотосферы. Но и сама атмосфера Солнца излучает свет. Во время солнечных затмений, когда солнечный диск закрыт Луной, происходит обращение линий спектра. На месте линий поглощения в солнечном спектре вспыхивают линии излучения. Не так давно, астрономы при помощи спектральных анализов установили, что в центре некоторых галактик находятся чёрные дыры. Астрономы использовали телескоп Уильяма Гершеля и с его помощью нашли способ, который позволяет определить химический состав атмосферы планет вне солнечной системы, что, по мнению ученых, может помочь в поиске неземных цивилизаций.

 

- Прочитав внимательно текст, ответить кратко на поставленные вопросы.

Вопросы по теме:

1. Что такое спектр?

2. Какие типы спектров вы знаете?

3. Виды спектров излучения и чем они испускаются?

4. Какой спектр называется спектром поглощения?

5. Что называют спектральным анализом?

6. Виды спектрального анализа.

7. Где применяется спектральный анализ?

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-07-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: