Модель ТЗ называют закрытой (сбалансированной), если суммарный объем груза всех поставщиков, равен суммарному спросу потребителей, т.е. выполняется равенство:
. (2.3)
Если для транспортной задачи выполняется одно из условий:
, (2.4)
, (2.5)
то модель задачи называют открытой (несбалансированной).
Для составления математической модели и для решения ТЗ с открытой моделью необходимо преобразовать ее в закрытую модель.
Так, при выполнении условия (2.4) необходимо ввести фиктивного (n+ 1)-ого потребителя
, то есть в матрице задачи добавляется столбец. Спрос фиктивного потребителя полагают равным небалансу, то есть
, а тарифы равными нулю, то есть
. Переменные
– это объем груза, который останется у i -ого поставщика.
Аналогично, при выполнении условия (2.5) вводится фиктивный поставщик
, то есть в матрице задачи добавляется строка. Запас груза фиктивного поставщика равен:
, а тарифы равными нулю, то есть
. Переменные
– это объем груза, на который запрос j -ого потребителя останется неудовлетворенным.
При преобразовании открытой модели задачи в закрытую модель, целевая функция не изменяется, так как все слагаемые, соответствующие дополнительным перевозкам, равны нулю.
Целевая функция (2.1) и система ограничений (2.2) являются математической моделью сбалансированной ТЗ.
Пример 2.1
В трех хранилищах
и
имеется соответственно 70, 90 и 50 т топлива. Требуется спланировать перевозку топлива четырем потребителям
и
, спрос которых равен соответственно 50, 70, 40 и 40т так, чтобы затраты на транспортировку были минимальными. Стоимость перевозки 1т (в усл. ден. ед.) указана в табл. 2.2.
Таблица 2.2
| Потребители | Запас топлива, т | |||||||||
| Хранилища |
|
|
|
| ||||||
| ||||||||||
| ||||||||||
| ||||||||||
| Потребность в топливе, т | ||||||||||
Составить математическую модель транспортной задачи.
Решение
Т.к. условие (2.3) не выполнено, то задача несбалансированная. Приведем ее к сбалансированному виду. Поскольку запасы топлива в хранилищах (
) превышают спрос потребителей (
), введем фиктивного потребителя
, спрос которого равен
. Все тарифы фиктивного потребителя будут равны нулю, т.е.
. Распределительная таблица примет вид:
Таблица 2.3
| Потребители | Запас топлива, т | ||||||||||
| Хранилища |
|
|
|
|
| ||||||
| |||||||||||
| |||||||||||
| |||||||||||
| Потребность в топливе, т |
Составим математическую модель сбалансированной транспортной задачи.
Обозначим
– объемы перевозок топлива от
-го хранилища
-му потребителю.
;

2.2. Решение транспортной задачи
Опорным планом ТЗ называется любой допустимый план, в котором число отличных от нуля переменных
будет не больше
. Опорный план будет невырожденным, если число базисных (отличных от нуля) переменных
будет равно
.