Теплофикационные электростанции — теплоэлектроцентрали (ТЭЦ)




 

Этот вид электростанций предназначен для централизованного снабжения промышленных предприятий и городов тепловой и электрической энергией. Являясь, как и КЭС, тепловыми станциями, они отличаются от последних использованием тепла «отработавшего» в турбинах пара для нужд промышленного производства, а также для отопления, кондиционирования воздуха и горячего водоснабжения. При такой комбинированной выработке электрической и тепловой энергии достигается значительная экономия топлива по сравнению с раздельным энергоснабжением, т. е. выработкой электроэнергии на КЭС и получением тепла от местных котельных. Поэтому ТЭЦ получили широкое распространение в районах (городах) с большим потреблением тепла и электроэнергии. В целом на ТЭЦ производится до 25% всей электроэнергии, вырабатываемой в стране.

Особенности технологической схемы ТЭЦ показаны на рис. 3.18. Части схемы, которые по своей структуре подобны таковым для КЭС, здесь не указаны. Основное отличие заключается в специфике пароводяного контура и в способе выдачи электроэнергии.

 

Рис. 3.18. Особенности технологической схемы станции типа ТЭЦ:

1 — сетевой насос; 2 — сетевой подогреватель

Как видно из рис. 3.18, пар на производство берется из промежуточных отборов турбины, после того как он отдал значительную часть энергии при давлении 10—20 кгс/см2, в то время как первичные его параметры перед турбиной составляют 90—130 кгс/см2.

Для теплоснабжения отбирается пар при давлении 1,2— 2,5 кгс/см2 и поступает в сетевые подогреватели 2 (рис. 3.18). Здесь он отдает тепло сетевой воде и конденсируется. Конденсат греющего пара возвращается в главный пароводяной контур, а вода, нагнетаемая в подогреватели сетевыми насосами 1, направляется на нужды теплофикации.

Ясно, что, чем больше коммерческий отпуск тепла (т. е. тепловое потребление) и чем меньше тепла бесполезно уносится циркуляционной водой, тем экономичнее процесс производства электроэнергии на ТЭЦ.

В целом КПД ТЭЦ превышает КПД КЭС. В зависимости от величины теплового потребления он может составить 50—80%.

Если потребления тепла нет или оно мало, ТЭЦ может вырабатывать электроэнергию в конденсационном режиме. Однако в этом режиме агрегаты ТЭЦ уступают по технико-экономическим показателям агрегатам КЭС.

Специфика электрической части ТЭЦ определяется положением станции вблизи центров электрических нагрузок. В этих условиях часть мощности может выдаваться в местную сеть непосредственно на генераторном напряжении. С этой целью на станции создается обычно генераторное распределительное устройство (ГРУ). Избыток мощности выдается, как в случае КЭС, в систему на повышенном напряжении.

Существенной особенностью ТЭЦ является также повышенная мощность теплового оборудования по сравнению с электрической мощностью станции с учетом выдачи тепловой энергии. Это обстоятельство предопределяет больший относительный расход электроэнергии на собственные нужды, чем в случае КЭС.

ГИДРАВЛИЧЕСКИЕ ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ (ГЭС)

ОБЩИЕ ПОЛОЖЕНИЯ

Гидроэлектрические станции — это высокоэффективные источники электроэнергии. В большинстве случаев гидроэлектростанции представляют собой объекты комплексного назначения, обеспечивающие нужды электроэнергетики и других отраслей народного хозяйства: мелиорации земель, водного транспорта, водоснабжения, рыбного хозяйства и пр.

Гидроэлектрическая станция — это комплекс сооружений и оборудования, посредством которых энергия водотока преобразуется в электрическую энергию. ГЭС состоит из гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание сосредоточенного напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в электрическую энергию.

По напору ГЭС делятся:

- на высоконапорные (более 80 м);

- средненапорные (от 25 до 80 м);

- низконапорные (до 25 м).

Принято называть совокупность гидротехнических сооружений, энергетическое и механическое оборудование гидроэнергетической установкой (ГЭУ).

Различают следующие основные типы гидроэнергетических установок:

- гидроэлектростанции (ГЭС);

- насосные станции (НС);

- гидроаккумулирутощие электростанции (ГАЭС);

- приливные электростанции (ПЭС).

Как уже отмечалось, ГЭС — это предприятие, на котором гидравлическая энергия водотока преобразуется в электрическую.

Основными сооружениями ГЭС на равнинной реке являются плотина, создающая водохранилище и сосредоточенный перепад уровней, т.е. напор, и здание ГЭС, в котором размещаются гидравлические турбины, генераторы, электрическое и механическое оборудование. В случае необходимости строятся водосбросные и судоходные сооружения, рыбопропускные сооружения и т.п.

Общий вид ГЭС приплотинного типа представлен на рис. 3.19.

Рис. 3.19. Общий вид ГЭС приплотинного типа

 

 

Вода под действием силы тяжести по водоводам движется из верхнего бьефа в нижний, вращая рабочее колесо турбины. Гидравлическая турбина соединена валом с ротором электрического генератора. Турбина и генератор вместе образуют гидрогенератор. В турбине гидравлическая энергия преобразуется в механическую энергию вращения на валу агрегата, а генератор преобразует эту энергию в электрическую. Возможно создание на реках каскадов ГЭС. В России построены и успешно эксплуатируются Волжский, Камский, Ангарский, Енисейский и другие каскады ГЭС.

Гидроэлектростанции как источник электрической энергии имеют существенные преимущества перед тепловыми и атомными электростанциями. Они лучше приспособлены для автоматизации и требуют меньшего количества эксплуатационного персонала. Показательны следующие средние значения удельной численности персонала станций различного вида на 1 млн кВт установленной мощности: для ГЭС — 300, для ТЭС — 1400, для АЭС — 1800 чел. Но это только на самой станции, а еще нужно добавить трудозатраты на добычу и транспортировку топлива, в итоге требуемая удельная численность персонала на 1 млн кВт для ТЭС (АЭС) в среднем составляет 2500 чел.

В России построены и эксплуатируются крупные ГЭС: каскад Волжских ГЭС, каждая мощностью 2530 МВт и менее; Братская ГЭС - 4500 МВт, Красноярская ГЭС — 6000 МВт, Саяно-Шушенская ГЭС — 6400 МВт и много других.

Малые ГЭС. В настоящее время в мире и России большой интерес вызывает возможность создания малых ГЭС (мощностью до 30 МВт). Они могут создаваться в короткие сроки с использованием унифицированных гидроагрегатов и строительных конструкций с высоким уровнем автоматизации систем управления. Экономическая эффективность их использования существенно возрастает при комплексном использовании малых водохранилищ (восстановления объема водохранилища, рыбоводство, водозаборы для систем орошения и водоснабжения и т.п.).

Насосная станция предназначена для перекачки воды с низких отметок на высокие и транспортировки воды в удаленные пункты.

На насосной станции устанавливаются насосные агрегаты, состоящие из насоса и двигателя. Насосная станция является потребителем электроэнергии.

Они используются для водоснабжения тепловых и атомных станций, коммунально-бытового и промышленного водоснабжения, в ирригационных системах, судоходных каналах и т.п.

Гидроаккумулирующая электростанция предназначена для перераспределения во времени энергии и мощности в энергосистеме. В часы пониженных нагрузок ГАЭС работает как насосная станция. За счет потребляемой энергии она перекачивает воду из нижнего бьефа в верхний и создает запасы гидроэнергии за счет повышения уровня верхнего бьефа.

В часы максимальной нагрузки ГАЭС работает как гидроэлектростанция. Вода из верхнего бьефа пропускается через турбины в нижний бьеф, и ГАЭС вырабатывает и выдает электроэнергию в энергосистему. В процессе работы ГАЭС потребляет дешевую электроэнергию, а выдает более дорогую в период пика нагрузки (за счет разности тарифов). Заполняя провалы нагрузки в энергосистеме, позволяет работать агрегатам атомных и тепловых станций в наиболее экономичном и безопасном режиме, резко снижая при этом удельный расход топлива на производство 1 кВт • ч электроэнергии в энергосистеме.

В настоящее время в России работает Загорская ГАЭС мощностью 1200 МВт, ведется проектирование других ГАЭС.

Работа ГАЭС показана на рис. 3.20, схема V.

Рис. 3.20. Принципиальные схемы создания напора

 

Приливные электростанции сооружаются на побережье морей и океанов со значительными приливно-отливными колебаниями уровня воды. Для этого естественный залив отделяется от моря плотиной и зданием ПЭС При приливе уровень моря будет выше уровня воды в отделенном от него заливе, а при отливе, наоборот, ниже уровня воды в заливе (см. рис. 3.20, схема IV). Перепады этих уровней создают напор, который используется при работе гидротурбин ПЭС. В некоторых морских заливах приливы достигают 10—12 м, а наибольшие приливы наблюдаются в заливе Фанди (Канада) и достигают 19,6 м.

Технические ресурсы приливной энергии России оцениваются в 200—250 млрд. кВт • ч в год и в основном сосредоточены у побережья Охотского, Берингова и Белого морей.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: