Величину и общее число Сил, действующих на частицу, следует оценивать в каждом конкретном случае.




В том случае, если число Сил, действующих на частицу, превышает две, следует делать то же, что и в случае с телами. Строим параллелограмм для двух Сил. Затем строим следующий параллелограмм, используя полученный вектор равнодействующей и следующую из Сил. И так далее, пока не будут учтены все Силы.

Угол между векторами Сил, действующих на частицу, очень важен при выяснении величины и направления равнодействующей Силы.

А) Угол между векторами Сил от 0˚ до 90˚.

В этом случае происходит своего рода суммирование Сил, действующих на частицу. Конечно, равнодействующая Сила не будет в точности равна сумме обеих Сил, действующих на частицу. Но она в любом случае окажется больше любой из двух Сил, из векторов которых мы строим параллелограмм. Это вы можете видеть по величине диагонали параллелограмма. И чем острее угол, тем больше величина равнодействующей Силы.

Крайний случай острого угла – 0˚, т.е. отсутствие угла. Векторы Сил на одной прямой, и их направление совпадает. В данном случае параллелограмм построить невозможно. Вместо него – прямая, на ней мы откладываем два отрезка, каждый из которых равен величине одной из действующих Сил. При 0˚ происходит полное суммирование векторов Сил.

Б) Угол между векторами Сил более 90˚.

В данном случае, если вы можете видеть по рисунку, происходит своего рода вычитание Сил. Равнодействующая Сила всегда оказывается больше меньшей из двух Сил и меньше большей. Подтверждение тому – величина диагонали. И чем больше угол, тем меньше величина равнодействующей Силы.

Крайний случай тупого угла – угол 180˚. Векторы Сил лежат на одной прямой. Однако в отличие от угла, равного 0˚, векторы противонаправлены. В этом крайнем случае просто происходит вычитание из вектора большей Силы вектора меньшей. Полученная разность точно соответствует величине равнодействующей Силы.

В любом случае, при любой величине угла вектор равнодействующей Силы всегда в большей мере смещен к вектору большей из двух Сил. Т.е. большая Сила заставляет частицу в большей мере смещаться в своем направлении.

3) И, наконец, приведем информацию о том, насколько зависит Правило Параллелограмма от типа воздействующих на частицу Сил.

А) Даже несмотря на то что источники всех типов Силы разные, их воздействие на частицу можно сопоставлять, так как любая из Сил стремится привести частицу в движение. А поэтому, даже если на частицу действуют Силы разного типа, можно выстроить Параллелограмм Сил на векторах, и его диагональ будет указанием направления, в котором частица будет смещаться.

Величина вектора Силы тем больше, чем больше Сила. А Сила тем больше, чем больше скорость, с которой частица смещалась бы в данном направлении, не действуй на нее еще другая Сила (или другие Силы).

Длина вектора результирующей (равнодействующей) Силы – диагонали – соответствует скорости, с которой частица будет смещаться под действием обеих приложенных к ней Сил.

Б) Мы установили ранее, что основных типов Силы всего четыре. Когда Галилей выводил Правило Параллелограмма, очевидно, что он делал это применительно к тем Силам, с которыми одни тела давят на другие или тащат их, заставляя таким путем перемещаться. Подобный тип Силы назван в этой книге Силой Давления Поверхности Частицы. Мы мало слышали о том, чтобы Правило Параллелограмма использовалось и для Силы Притяжения. Тем более, это ограничение относится к Силе Отталкивания и Силе Инерции, из которых первая наукой почти не признана, а вторая вообще ей не известна.

Но так или иначе, данное Правило имеет универсальный характер и может использоваться для любого из четырех типов Силы – Поверхности Частицы, Притяжения, Отталкивания и Инерции. Однако в неизменном виде оно может применяться только для Силы Давления Поверхности Частицы, т.е. для такого же случая, который описан Галилеем для тел.

На тело с двух сторон воздействуют два тела – либо давят на него, либо тащат. В нашем случае на частицу будут давить две частицы (механически тащить частицу они не могут).

Отдельно взятая, свободная частица никогда не станет оказывать долговременное давление на другую частицу, если только на нее не действует Сила Притяжения со стороны этой частицы. Или же если частицы входят в состав тел, и тела, сдавливая друг друга, давят и на какую-либо частицу между ними. Поэтому в нашем случае речь идет об одномоментном давлении на частицу двух частиц в результате их соударения с ней. После того как с частицей сталкиваются две другие частицы, она начинает двигаться по инерции именно в соответствии с Правилом Параллелограмма. Диагональ (вектор равнодействующей Силы) показывает направление, в котором станет двигаться частица. Как долго продлится инерционное движение, зависит от скорости, с которой двигались частицы в момент соударения с нею, от угла между векторами Сил и еще от качества самой частицы.

В) Единственная сложность, с которой мы столкнемся при построении Параллелограмма Сил, связана с Силами Притяжения и Отталкивания. Здесь идет речь даже скорее не о сложности, а о непривычности. Источники Сил Притяжения или Отталкивания отстоят от частицы на то или иное расстояние. Однако эффект воздействия этих Сил ощущается частицей непосредственно. Это и неудивительно, ведь гравитационное или антигравитационное взаимодействие распространяется мгновенно. Объясняется эта мгновенность распространения тем, что эфирное «полотно» – это своего рода монолит, который заполняет однородно всю Вселенную. И возникновение в этом полотне любого избытка или недостатка Эфира сразу ощущается на любом расстоянии.

В данном случае, когда типы Силы, действующие на частицу, различны, вектор Силы должен указывать направление, в котором Сила стремится сместить частицу. Так, например, если на частицу действует Сила Притяжения, то вектор будет направлен к объекту, источнику этой Силы, а не от него. А вот в случае с Силой Отталкивания все наоборот. Вектор будет направлен от источника данной Силы.

Что же касается Силы Давления Поверхности Частицы, то здесь все так же, как и в механике тел. В этом случае источник Силы непосредственно контактирует с частицей – соударяется с ней. И вектор этой Силы направлен в том же направлении, что вектор движения частицы, чья поверхность оказывает давление.

И, наконец, последняя из Сил – Инерции. О наличии этой Силы можно говорить только в том случае, если частица инерционно движется. Если частица не движется по инерции, то нет и Силы Инерции. Вектор Силы Инерции всегда совпадает с вектором движения частицы в данный момент. Источник Силы Инерции – испускаемый задним полушарием частицы Эфир.

Г) Никогда не случится, чтобы обе Силы, действующие на частицу, были инерционными, так как частица может двигаться по инерции в каждый момент времени только в одном направлении.

Д) Если одна или обе Силы, действующие на частицу, относятся к типу либо Притяжения, либо Отталкивания, частица будет двигаться по параболе, постепенно смещаясь под действием большей из Сил.

Если одна из Сил, действующих на частицу, относится к типу Притяжения или Отталкивания, а вторая – это Сила Инерции, тогда траектория движения частицы тоже параболическая.

Е) Никогда не бывает, чтобы на частицу одновременно действовали Сила Притяжения и Сила Отталкивания, и при этом векторы их лежали на одной прямой и были бы противонаправлены. Объясняется это тем, что Сила Притяжения и Сила Отталкивания – Силы-антиподы. Вектор Силы Притяжения направлен к источнику Силы. А вектор Силы Отталкивания – от него. Поэтому если источники Сил Притяжения и Отталкивания располагаются по разные стороны от частицы, векторы их Сил будут суммироваться. Если же источники Сил располагаются с одной стороны от частицы, то частица будет ощущать только какую-то одну из Сил – либо Притяжения, либо Отталкивания. А все потому, что Поля Притяжения и Поля Отталкивания экранируют и влияют на величину друг друга.

Но в любом случае, к любой частице можно применить Правило Параллелограмма и определить с его помощью направление и величину вектора равнодействующей Силы. В соответствии с величиной и направлением этого вектора частица и будет смещаться в данный момент времени.

Все, что было только что сказано относительно Правила Параллелограмма для частиц, может быть в полной мере использовано и для тел.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: