Степенная функция с нечетным положительным показателем.





Элементарные функции и их свойства

Постоянная функция.

Постоянная функция задается на множестве всех действительных чисел формулой , где C – некоторое действительное число. Постоянная функция ставит в соответствие каждому действительному значению независимой переменной x одно и то же значение зависимой переменной y – значение С. Постоянную функцию также называют константой.

Графиком постоянной функции является прямая, параллельная оси абсцисс и проходящая через точку с координатами (0,C). Для примера покажем графики постоянных функций y=5, y=-2 и , которым на рисунке, приведенном ниже, отвечают черная, красная и синяя прямые соответственно.

Свойства постоянной функции.

· Область определения: все множество действительных чисел.

· Постоянная функция является четной.

· Область значений: множество, состоящее из единственного числа С.

· Постоянная функция невозрастающая и неубывающая (на то она и постоянная).

· Говорить о выпуклости и вогнутости постоянной не имеет смысла.

· Асимптот нет.

· Функция проходит через точку (0,C) координатной плоскости.

Корень n-ой степени.

Рассмотрим основную элементарную функцию, которая задается формулой , где n – натуральное число, большее единицы.

Корень n-ой степени, n - четное число.

Начнем с функции корень n-ой степени при четных значениях показателя корня n.

Для примера приведем рисунок с изображениями графиков функций и , им соответствуют черная, красная и синяя линии.

Аналогичный вид имеют графики функций корень четной степени при других значениях показателя.

Свойства функции корень n-ой степени при четных n.

· Область определения: множество всех неотрицательных действительных чисел .

· При x=0 функция принимает значение, равное нулю.

· Эта функция общего вида (не является четной или нечетной).

· Область значений функции: .

· Функция при четных показателях корня возрастает на всей области определения.

· Эта функция имеет выпуклость, направленную вверх, на всей области определения, точек перегиба нет.

· Асимптот нет.

· График функции корень n-ой степени при четных n проходит через точки (0,0) и(1,1).

К началу страницы

· Корень n-ой степени, n - нечетное число.

Функция корень n-ой степени с нечетным показателем корня n определена на всем множестве действительных чисел. Для примера приведем графики функций и , им соответствуют черная, красная и синяя кривые.

При других нечетных значениях показателя корня графики функции будут иметь схожий вид.

Свойства функции корень n-ой степени при нечетных n.

· Область определения: множество всех действительных чисел.

· Эта функция нечетная.

· Область значений функции: множество всех действительных чисел.

· Функция при нечетных показателях корня возрастает на всей области определения.

· Эта функция вогнутая на промежутке и выпуклая на промежутке , точка с координатами (0,0) – точка перегиба.

· Асимптот нет.

· График функции корень n-ой степени при нечетных n проходит через точки(-1,-1), (0,0) и (1,1).

К началу страницы

Степенная функция.

Степенная функция задается формулой вида .

Рассмотрим вид графиков степенной функции и свойства степенной функции в зависимости от значения показателя степени.

Начнем со степенной функции с целым показателем a. В этом случае вид графиков степенных функций и свойства функций зависят от четности или нечетности показателя степени, а также от его знака. Поэтому сначала рассмотрим степенные функции при нечетных положительных значениях показателя a, далее - при четных положительных, далее - при нечетных отрицательных показателях степени, и, наконец, при четных отрицательных a.

Свойства степенных функций с дробными и иррациональными показателями (как и вид графиков таких степенных функций) зависят от значения показателя a. Их будем рассматривать, во-первых, при a от нуля до единицы, во-вторых, при a больших единицы, в-третьих, при a от минус единицы до нуля, в-четвертых, при a меньших минус единицы.

В заключении этого пункта для полноты картины опишем степенную функцию с нулевым показателем.

Степенная функция с нечетным положительным показателем.

Рассмотрим степенную функцию при нечетном положительном показателе степени, то есть, при а=1,3,5,….

На рисунке ниже приведены графики степенных фнукций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=1имеем линейную функцию y=x.





Читайте также:
Определение понятия «общество: Понятие «общество» употребляется в узком и широком...
Решебник для электронной тетради по информатике 9 класс: С помощью этого документа вы сможете узнать, как...
Социальное обеспечение и социальная защита в РФ: Понятие социального обеспечения тесно увязывается с понятием ...
Экономика как подсистема общества: Может ли общество развиваться без экономики? Как побороть бедность и добиться...

Рекомендуемые страницы:



Вам нужно быстро и легко написать вашу работу? Тогда вам сюда...

Поиск по сайту

©2015-2021 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:

Мы поможем в написании ваших работ! Мы поможем в написании ваших работ! Мы поможем в написании ваших работ!
Обратная связь
0.015 с.