Степень с натуральным показателем





Степень с натуральным показателем и её свойства. Одночлен. Функции y=x2, y=x3, и их графики.

Цель: выработать умение выполнять действия над степенями с натуральными показателями.

Знать определение степени, одночлена, многочлена; свойства степени с натуральным показателем, свойства функций у=х2, у=х3.

Уметь находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики функций у=х2, у=х3; выполнять действия со степенями с натуральным показателем; преобразовывать выражения, содержащие степени с натуральным показателем; приводить одночлен к стандартному виду.

 

Многочлены

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочлена на множители.

Цель: выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.

Знать определение многочлена, понимать формулировку заданий: «упростить выражение», «разложить на множители».

Уметь приводить многочлен к стандартному виду, выполнять действия с одночленом и многочленом; выполнять разложение многочлена вынесением общего множителя за скобки; умножать многочлен на многочлен, раскладывать многочлен на множители способом группировки, доказывать тождества.

Формулы сокращённого умножения

Формулы . Применение формул сокращённого умножения к разложению на множители.

Цель: выработать умение применять в несложных случаях формулы сокращённого умножения для преобразования целых выражений в многочлены и для разложения многочленов на множители.

Знать формулы сокращенного умножения: квадратов суммы и разности двух выражений; различные способы разложения многочленов на множители.

Уметь читать формулы сокращенного умножения, выполнять преобразование выражений применением формул сокращенного умножения: квадрата суммы и разности двух выражение, умножения разности двух выражений на их сумму; выполнять разложение разности квадратов двух выражений на множители; применять различные способы разложения многочленов на множители; преобразовывать целые выражения; применять преобразование целых выражений при решении задач.

 

Системы линейных уравнений

Система уравнений с двумя переменными. Решение систем двух линейных уравнений с двумя переменными. Решение задач методом составления систем уравнений..

Цель: познакомить учащихся со способами решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

Знать, что такое линейное уравнение с двумя переменными, система уравнений, знать различные способы решения систем уравнений с двумя переменными: способ подстановки, способ сложения; понимать, что уравнение – это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики.

Уметь правильно употреблять термины: «уравнение с двумя переменными», «система»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить систему уравнений с двумя переменными»; строить некоторые графики уравнения с двумя переменными; решать системы уравнений с двумя переменными различными способами.

Повторение. Решение задач

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 класса)

 

Требования к математической подготовке учащихся 7 класса.

В результате изучения алгебры ученик должен

Знать/понимать

• существо понятия математического доказательства; примеры доказательств;

• существо понятия алгоритма; примеры алгоритмов;

• как используются математические формулы, уравнения; примеры их применения для решения математических и практических задач;

• как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

• смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

• формулы сокращенного умножения;

Уметь

• составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

• выполнять основные действия со степенями с натуральными показателями, с одночленами и многочленами; выполнять разложение многочленов на множители; сокращать алгебраические дроби;

• решать линейные уравнения и уравнения, сводящиеся к ним, системы двух линейных уравнений с двумя переменными;

• решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

• определять координаты точки плоскости, строить точки с заданными координатами, строить графики линейных функций и функции у=х2;

• находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

• определять свойства функции по ее графику; применять графические представления при решении уравнений и систем;

• описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

• выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;

• моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

• описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

интерпретации графиков реальных зависимостей между величинами.

 

 

Контроль и оценка планируемых результатов реализации программы

 

Система оценки достижения планируемых результатов освоения основной образователь­ной программыосновного общего образования предполагает комплексный подход к оценке результатовобразования, позволяющий вести оценку достижения обучаю­щимися всех трёх групп результатов образования: личностных, метапредмет­ных и предметных.

Система оценки предусматривает уровневый подходк содержанию оценки и инструмента­рию для оценки достижения планируемых результатов, а также к представле­нию и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образователь­ных достижений на основе«метода сложения», при котором фиксируется дости­жение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индиви­дуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

Система оценки достижения планируемых результатов освоения основной образователь­ной программыосновного общего образования предполагает комплексный подход к оценке результатовобразования, позволяющий вести оценку достижения обучаю­щимися всех трёх групп результатов образования: личностных, метапредмет­ных и предметных.

Система оценки предусматривает уровневый подходк содержанию оценки и инструмента­рию для оценки достижения планируемых результатов, а также к представле­нию и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образователь­ных достижений на основе«метода сложения», при котором фиксируется дости­жение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индиви­дуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.





Читайте также:
Методы цитологических исследований: Одним из первых создателей микроскопа был...
Основные направления модернизма: главной целью модернизма является создание...
ТЕМА: Оборудование профилактического кабинета: При создании кабинетов профилактики в организованных...
Образование Киргизкой (Казахской) АССР: Предметом изучения Современной истории Казахстана являются ...

Рекомендуемые страницы:



Вам нужно быстро и легко написать вашу работу? Тогда вам сюда...

Поиск по сайту

©2015-2021 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:

Мы поможем в написании ваших работ! Мы поможем в написании ваших работ! Мы поможем в написании ваших работ!
Обратная связь
0.012 с.