Закон Кирхгофа для излучения. Абсолютно черное тело




Тепловое излучение и люминисценция.

Тепловое излучение – электромагнитное излучение, испускаемое веществом, возникающее за счет его внутренней энергии. Все другие виды свечения (излучения света), возбуждаемые за счет любого другого вида энергии, кроме теплового, называются люминесценцией.люминесценция – излучение избыточное над тепловым и имеющее длительность, значительно превышающую период световых колебаний. Тепловое излучение бывает при любой температуре, человек только не ощущает его при меньшей температуре, чем температура тела, а при мы его не видим. Опыт показывает, что единственным видом излучения, которое может находиться в равновесии с излучающими телами, является тепловое излучение. Равновесное излучение устанавливается в адиабатически замкнутой системе. Допустим, что равновесие нарушено, и тело излучает больше, чем поглощает. Тогда внутренняя энергия будет убывать, это уменьшит температуру тела, что противоречит адиабатичности системы. Следовательно, и излучение не будет равновесным. Все виды люминесценции оказываются неравновесными. Например, электролюминесценция будет продолжаться до тех пор, пока есть рекомбинирующие частицы, т.е. происходит процесс ионизации. Обычные температуры практически не влияют на этот процесс, т.е. неважно, сколько энергии поглощает тело от окружающей среды. Итак, равновесным может быть только тепловое излучение. Только к нему могут быть применены законы термодинамики.

Закон Кирхгофа для излучения. Абсолютно черное тело

Закон Кирхгофа для излучения - Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Очевидно, что поглощательная способность aω (или aλ) для разных тел разная, то из закона Кирхгофа следует, что чем сильнее тело поглощает излучение, тем сильнее оно должно это излучение испускать. Так как для абсолютного черного тела aω ≡ 1 (или aλ ≡ 1), то отсюда следует, что в случае абсолютно черного тела:

Абсолютно черное тело Абсолютно черное тело - это тело, для которого поглощательная способность тождественно равна единице для всех длин волн и для любой температуры, т.е. Абсолютно черное тело - это модельное понятие

3. Закон Стефана-больцмана

Закон Стефана — Больцмана — интегральный закон излучения абсолютно чёрного тела. Определяет зависимость плотности мощности излучения абсолютно чёрного тела от его температуры.В словесной форме закон может быть сформулирован следующим образом[1]:Полная объёмная плотность равновесного излучения и полная испускательная способность абсолютно чёрного тела пропорциональны четвёртой степени его температуры. Полная объёмная плотность равновесного излучения и полная испускательная способность абсолютно чёрного тела пропорциональны четвёртой степени его температуры.Математически выражается в следующей форме для объёмной плотности равновесного излучения: где a — некая универсальная константа, T — температура абсолютно чёрного тела.Для полной испускательной способности (энергетической светимости) S закон имеет вид: где— сигма - постоянная Стефана — Больцмана, которая может быть выражена через фундаментальные константы путём интегрирования по всем частотам формулы Планка

4 Закон смещения Вина

Зако́н смеще́ния Ви́на устанавливает зависимость длины волны, на которой поток излучения энергии чёрного тела достигает своего максимума, от температуры чёрного тела.

 

 

5 Плотность энергии равновесного излучения

 

6 Формула Релея-Джинса (УФ катастрофа)

итоговая формула: (6.2)

7 Формула планка теплового равновесного излучения

Формула Планка — выражение для спектральной плотности мощности излучения (спектральной плотности энергетической светимости) абсолютно чёрного тела, которое было получено Максом Планком для плотности энергии излучения

8 Тормозное Рентгеновское излучение

Тормозное рентгеновское излучение – это жесткое электромагнитное излучение, возникающее в результате торможения ускоренных электронов в кулоновском поле ядер атомов анода. Электрон, ускоренный разностью потенциалов между катодом и анодом, подлетает к аноду и при попадании в кулоновское поле ядер атомов анода начинает двигаться по криволинейной траектории, теряя свою энергию. Большая часть энергии расходуется на нагрев анода и значительно меньше выделяется в виде жесткого электромагнитного излучения – тормозного рентгеновского излучения (ТРИ).Для того чтобы описать основные свойства тормозного рентгеновского излучения, необходимо ввести несколько понятий.Спектральная плотность потока квантов рентгеновского излучения – количество квантов определенной энергии, проходящих в единицу времени через единичную площадь, перпендикулярную направлению распространения излучения.Интегрирование спектральной плотности потока квантов по всему диапазону энергий дает общее количество всех квантов, проходящих через рассматриваемую единичную площадь.Спектральная интенсивность излучения – количество энергии, проходящей в виде квантов определенной энергии единицу времени через единичную площадь, перпендикулярную направлению распространения излучения.Интегрирование спектральной интенсивности по всему диапазону энергий дает интегральную или полную интенсивность излучения.

9 ФОТОЭФФЕКТ. ФОРМУЛА ЭНШТЕЙНА. КРАСНАЯ ГРАНИЦА ФОТОЭФФЕКТА.

Фотоэффект — это явление испускания электронов веществом под действием света. Если зарядить цинковую пластину, присоединенную к электрометру, отрицательно и освещать ее электрической дутой (рис. 35), то электрометр быстро разрядится

В результате исследований были установлены следующие эмпирические закономерности:

— количество электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны;

— максимальная кинетическая энергия фото электронов линейно возрастает с частотой света и н зависит от его интенсивности.

Кроме того, были установлены два фундаменталь ных свойства.

10 ФОТОНЫ-СВЕТОВЫЕ КВАНТЫ. ОПЫТ БОТЕ. КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ СВЕТА

ОПЫТ БОТЕ

КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ СВЕТА

11ЭФЕКТ КОМПТОНА

ЭффектКомптона – рассеяние электромагнитного излучения на свободном электроне, сопровождающееся уменьшением частоты излучения. В этом процессе электромагнитное излучение ведёт себя как поток отдельных частиц – корпускул (которыми в данном случае являются кванты электромагнитного поля - фотоны), что доказывает двойственную – корпускулярно-волновую – природу электромагнитного излучения. С точки зрения классической электродинамики рассеяние излучения с изменением частоты невозможно.

Комптоновское рассеяние – это рассеяние на свободном электроне отдельного фотона с энергией Е = hν = hc/λ (h – постоянная Планка, ν – частота электромагнитной волны, λ – её длина, с – скорость света) и импульсом р = Е/с. Рассеиваясь на покоящемся электроне, фотон передаёт ему часть своей энергии и импульса и меняет направление своего движения. Электрон в результате рассеяния начинает двигаться. Фотон после рассеяния будет иметь энергию Е' = hν' (и частоту) меньшую, чем его энергия (и частота) до рассеяния. Соответственно после рассеяния длина волны фотона λ' увеличится. Из законов сохранения энергии и импульса следует, что длина волны фотона после рассеяния увеличится на величину.

12 АТОМНЫЕ СПЕКТРЫ. СЕРИИ СПЕКТРАЛЬНЫХ ЛИНИЙ. ОБОБЩЕННАЯ ФОРМУЛА БАЛЬМЕРА.

АТОМНЫЕ СПЕКТРЫ- оптические спектры свободных или слабо связанных атомов (одноатомных газов, паров). Обусловлены квантовыми переходами атома. Атомные спектры - линейчатые, состоят из отдельных спектральных линий, которые характеризуются определенной длиной волны и для простых атомов группируются в спектральные серии. Содержат информацию о строении атомов, используются также в спектральном анализе.

Спектральная серия — набор спектральных линий, которые получаются при переходе электронов с любого из вышележащих термов на один нижележащий, являющийся основным для данной серии. Точно также в поглощении при переходе электронов с данного уровня на любой другой образуется спектральная серия.Максимальная частота (минимальная длина волны), допустимая для данной серии, называется границей серии. За границей серии спектр становится непрерывным.Наиболее изученными являются спектральные серии водорода, гелия и щелочных металлов. Для многоэлектронных оболочек аналитическое описание термов очень сложно.

ОБОБЩЕННАЯ ФОРМУЛА БАЛЬМЕРА.

13 МОДЕЛЬ АТОМА ТОМСОНА

предполагал, что электроны в атоме располагаются строго на одной плоскости, представляющие собой концентрические кольца. Томсона, который высказывал предположение о том, что атом является сгустком материи, имеющей положительный электрический заряд. Внутри этого сгустка находятся равномерно распределенные электроны – именно поэтому данная модель была названа «кексовой». Ведь согласно ей электроны в материи располагаются подобно изюминкам в кексе. Другое неофициальное название модели – «Пудинг с изюмом». омсона имела один существенный недостаток. Она не могла объяснить дискретный характер излучения атома. Нельзя было с ее помощью и сказать что-либо о причинах устойчивости атома. Окончательно она была опровергнута, когда были произведены знаменитые опыты Резерфорда.

14 ЯДЕРНАЯ МОДЕЛЬ АТОМА РЕЗЕРФОРДА

Первые прямые эксперименты по исследованию внутренней структуры атомов были выполнены Э. Резерфордом и его сотрудниками Э. Марсденом и Х. Гейгером в 1909–1911 годах. Резерфорд предложил применить зондирование атома с помощью α-частиц, которые возникают при радиоактивном распаде радия и некоторых других элементов. Масса α-частиц приблизительно в 7300 раз больше массы электрона, а положительный заряд равен удвоенному элементарному заряду. В своих опытах Резерфорд использовал α-частицы с кинетической энергией около 5 МэВ (скорость таких частиц очень велика – порядка 107 м/с, но все же значительно меньше скорости света). α-частицы – это полностью ионизированные атомы гелия. Они были открыты Резерфордом в 1899 году при изучении явления радиоактивности. Этими частицами Резерфорд бомбардировал атомы тяжелых элементов (золото, серебро, медь и др.). Электроны, входящие в состав атомов, вследствие малой массы не могут заметно изменить траекторию α-частицы. Рассеяние, то есть изменение направления движения α-частиц, может вызвать только тяжелая положительно заряженная часть атома. Схема опыта Резерфорда представлена на рис. 6.1.2.

От радиоактивного источника, заключенного в свинцовый контейнер, α-частицы направлялись на тонкую металлическую фольгу. Рассеянные частицы попадали на экран, покрытый слоем кристаллов сульфида цинка, способных светиться под ударами быстрых заряженных частиц. Сцинтилляции (вспышки) на экране наблюдались глазом с помощью микроскопа. Наблюдения рассеянных α-частиц в опыте Резерфорда можно было проводить под различными углами φ к первоначальному направлению пучка. Было обнаружено, что большинство α-частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30°. Очень редкие α-частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к 180°.

 

Этот результат был совершенно неожиданным даже для Резерфорда. Его представления находилbcm в резком противоречии с моделью атома Томсона, согласно которой положительный заряд распределен по всему объему атома. При таком распределении положительный заряд не может создать сильное электрическое поле, способное отбросить α-частицы назад. Электрическое поле однородного заряженного шара максимально на его поверхности и убывает до нуля по мере приближения к центру шара. Если бы радиус шара, в котором сосредоточен весь положительный заряд атома, уменьшился в n раз, то максимальная сила отталкивания, действующая на α-частицу, по закону Кулона возросла бы в n2 раз. Следовательно, при достаточно большом значении n α-частицы могли бы испытать рассеяние на большие углы вплоть до 180°. Эти соображения привели Резерфорда к выводу, что атом почти пустой, и весь его положительный заряд сосредоточен в малом объеме. Эту часть атома Резерфорд назвал атомным ядром. Так возникла ядерная модель атома.

15 ПОСТУЛАТЫБОРА

Первый постулат Бора (постулат стационарных состояний) гласит: атомная система может находится только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная энергия En. В стационарных состояниях атом не излучает.Этот постулат находится в явном противоречии с классической механикой, согласно которой энергия движущегося электрона может быть любой. Он находится в противоречии и с электродинамикой, так как допускает возможность ускоренного движения электронов без излучения электромагнитных волн. Согласно первому постулату Бора, атом характеризуется системой энергетических уровней, каждый из которых соответствует определенному стационарному состоянию (рис. 6.2.2). Механическая энергия электрона, движущегося по замкнутой траектории вокруг положительно заряженного ядра, отрицательна. Поэтому всем стационарным состояниям соответствуют значения энергии En < 0. При En ≥ 0 электрон удаляется от ядра, т. е. происходит ионизация. Величина |E1| называется энергией ионизации. Состояние с энергией E1 называется основным состоянием атома.

16 ПОСТУЛАТ ПЛАНКА И ПРАВИЛО КВАНТОВАНИЯ КРУГОВЫХ ОРБИТ

17 БОРОВСКАЯ ТЕОРИЯ ВОДОРОДНОГО АТОМА

Атом водорода - простейший из всех атомов. Его ядро - элементарная частица протон. Масса протона в 1836 раз больше массы электрона, вследствие этого ядро в первом приближении можно считать неподвижным и рассматривать только движение электрона (см. рис. 4.1

Заряд протона равен e, он положительный и равен по абсолютной величине заряду электрона, поэтому между ядром и электроном действует кулоновская сила притяжения

29 РЕНТГЕНОВСКИЕ СПЕКТРЫ. ЗАКОН МОЗЛИ

30 ЭНЕРГИЯ МОЛЕКУЛЫ. МОЛЕКУЛЯРНЫЕ СПЕКТРЫ

МОЛЕКУЛЯРНЫЕ СПЕКТРЫ- спектры поглощения, испускания или рассеяния, возникающие при квантовых переходах молекул из одного энергетич. состояния в другое. M. с. определяются составом молекулы, её структурой, характером хим. связи и взаимодействием с внеш. полями (и, следовательно, с окружающими её атомами и молекулами). Наиб. характерными получаются M. с. разреженных молекулярных газов, когда отсутствует уширение спектральных линий давлением: такой спектр состоит из узких линий с доп-леровской шириной.

 

31 КОМБИНАЦИОННОЕ РАССЕИВАНИЕ СВЕТА

комбинационное рассеяние света сокр., КР; КРС иначе эффект комбинационного рассеяния; рамановское рассеяние; эффект Рамана (англ. Raman effect или Raman scattering) — неупругое рассеяние света (с изменением частоты/длины волны), сопровождающееся переходами вещества между колебательными уровнями энергии.

Описание

Рассеяние света, при котором происходит обмен энергией между фотонами и веществом, называется неупругим рассеянием или комбинационным рассеянием (эффектом Рамана). Следствием изменения энергии фотонов является изменение длины волны (частоты) рассеянного света. Наблюдается также упругое рассеяние света веществом, без изменения энергии фотонов и, следовательно, длины световой волны. Пример упругого рассеяния — релеевское рассеяние света (эффект Релея).

Механизм комбинационного рассеяния (КР) поясняет рис. 1. Стоксово КР характеризуется тем, что в процессе взаимодействия с молекулой фотон отдает ей часть энергии. В результате такого процесса молекула переходит с уровня с меньшим значением энергии на уровень с более высоким значением энергии, а энергия рассеянного фотона уменьшается (длина волны увеличивается (рис. 1, слева)). Антистоксово КР характеризуется тем, что в процессе взаимодействия с молекулой, находящейся в возбужденном состоянии, энергия фотона увеличивается, а молекула переходит в состояние с меньшим значением энергии (рис. 1, справа). Для сравнения на рис. 1 в центре приведена диаграмма, соответствующая релеевскому рассеянию, когда обмена энергией между фотоном и молекулой не происходит. На рис. 1 б также показан виртуальный уровень энергии молекулы в поле световой волны (верхняя пунктирная линия).

Так как при термодинамическом равновесии заселенность уровней уменьшается с увеличением энергии, то при спонтанном КР частота антистосковых переходов меньше частоты стоксовых — поэтому интенсивность стоксовых линий КР в спектре выше. Стоксовы линии КР расположены в спектре с «красной» стороны (со стороны больших длин волн/меньших частот) от релеевской линии. Не все переходы между различными колебательными энергетическими уровнями возможны.

Интенсивность комбинационного рассеяния (КР) на 3–6 порядков ниже релеевского, поэтому для наблюдения КР спектров требуется интенсивный источник монохроматического излучения и высокочувствительный детектор. В настоящее время в качестве источников излучения, главным образом, используют лазеры. КР-спектроскопия может быть использована для изучения структуры и состава вещества, его взаимодействия с окружающей средой. Полосы комбинационного рассеяния можно характеризовать частотой, интенсивностью и степенью деполяризации излучения. При облучении оптически анизотропных молекул поляризованным светом рассеянный свет окажется частично деполяризованны

32 ВЫНУЖДЕННОЕ ИЗЛУЧЕНИЕ. ЛАЗЕРЫ

Вы́нужденное излуче́ние, индуци́рованное излучение — генерация нового фотона при переходе квантовой системы (атома, молекулы, ядра и т. д.) между двумя состояниями (с более высокого на более низкий энергетический уровень) под воздействием индуцирующего фотона, энергия которого равна разности энергий этих состояний. Созданный фотон имеет ту же энергию, импульс, фазу, поляризацию, а также направление распространения, что и индуцирующий фотон (который при этом не поглощается). Оба фотона являются когерентными.

33 СОСТАВ АТОМНОГО ЯДРА

 

34 МАССА И ЭНЕРГИЯ СВЯЗИ ЯДРА. ЯДЕРНЫЕ СИЛЫ

ЯДЕРНЫЕ СИЛЫ

Ядерные силы силы — удерживающие нуклоны (протоны и нейтроны) в ядре. Они действуют только на расстояниях не более 10 -13 см и достигают величины, в 100-1000 раз превышающей силу взаимодействия электрических зарядов.

- силы взаимодействия между нуклонами; обеспечивают большую величину энергии связи ядер по сравнению с др. системами. Я. с. являются наиб. важным и распространённым примером сильного взаимодействия (СВ).

35РАДИОАКТИВНОСТЬ.ПЕРИОД ПОЛУРАСПАДА.ЗАКОН РАДИОАКТИВНОГО ПРЕВРАЩЕНИЯ.

Радиоактивность – самопроизвольные превращения атомных ядер, сопровождающиеся испусканием элементарных частиц или более лёгких ядер. Ядра, подверженные таким превращениям, называют радиоактивными, а процесс превращения – радиоактивным распадом.

Радиоактивный распад возможен только тогда, когда он энергетически выгоден, т.е. сопровождается выделением энергии. Условием этого является превышение массы М исходного ядра суммы масс mi продуктов распада, т.е. неравенство

M >∑mi.

ПЕРИОД ПОЛУРАСПАДА

 

ЗАКОН РАДИОАКТИВНОГО ПРЕВРАЩЕНИЯ

36 ЯДЕРНЫЕ РЕАКЦИИ

Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов. В результате ядерных реакций могут образовываться новые радиоактивные изотопы, которых нет на Земле в естественных условиях. При ядерных реакциях выполняется несколько законов сохранения: импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (т. е. числа нуклонов – протонов и нейтронов). Выполняется также ряд других законов сохранения, специфических для ядерной физики и физики элементарных частиц. Ядерные реакции могут протекать при бомбардировке атомов быстрыми заряженными частицами (протоны, нейтроны, α-частицы, ионы). Первая реакция такого рода была осуществлена с помощью протонов большой энергии, полученных на ускорителе, в 1932 году: Ядерные реакции сопровождаются энергетическими превращениями. Энергетическим выходом ядерной реакции называется величина

 

37 ДЕЛЕНИЕ ЯДЕР УРАНА U235 И U238 И ЯДЕР ПЛУТОНИЯ Pu239. ЦЕПНЫЕ ЯДЕРНЫЕ РЕАКЦИИ. АТОМНАЯ БОМБА. ЯДЕРНЫЙ РЕАКТОР

ДЕЛЕНИЕ ЯДЕР УРАНА U235 И U238 И ЯДЕР ПЛУТОНИЯ Pu239

 

ЦЕПНЫЕ ЯДЕРНЫЕ РЕАКЦИИ. АТОМНАЯ БОМБА. ЯДЕРНЫЙ РЕАКТОР

Цепной ядерной реакцией деления называется самоподдерживающийся процесс деления ядер тяжелых нуклидов, в котором каждое последующее деление вызывается нейтронами, полученными при предыдущих делениях. Другими словами, если одному из вторичных нейтронов удастся вызвать деление другого ядра урана, то процесс будет самоподдерживающимся. Совокупность делящегося вещества, удовлетворяющая этому требованию, называется критической сборкой. Первая такая сборка, названная ядерным реактором, была построена в 1942 г. под руководством Энрико Ферми на территории Чикагского университета. Первый ядерный реактор был запущен в 1946 г. под руководством И. Курчатова в Москве. Первая атомная электростанция мощностью 5 МВт была пущена в СССР в 1954 г. в г. Обнинске. В настоящее время тепловая и электрическая энергия вырабатывается в сотнях ядерных реакторов, работающих в различных странах мира. Схематично самоподдерживающийся процесс деления, идущий в ядерном реакторе на тепловых нейтронах можно представить схемой изображенной на рисунке 4.9.2.

Энергетическим ядерным реактором называют аппарат, в котором осуществляется управляемая цепная реакция деления, выделяющаяся при этом энергия превращается в тепловую и отводится из реактора с помощью теплоносителя.

Рассмотрим схематически конструкцию ядерного реактора тепловых нейтронах, в состав которого входят следующие элементы. В активной зоне реактора (см. рисунок 4.12 или здесь) расположены тепловыделяющие элементы (твэлы) и замедлитель (в нем нейтроны замедляются до тепловых энергий). Твэлы представляют собой блоки из делящегося материала, заключенные в прочную герметичную оболочку. За счет энергии, выделяющейся при делении ядерного горючего, твэлы разогреваются, а поэтому для охлаждения они помещаются в поток теплоносителя. Активная зона окружена отражателем нейтронов, уменьшающим утечку нейтронов из активной зоны. Управление реактором, поддержание стационарного процесса и защита от аварий осуществляется с помощью управляющих стержней (СУЗ – система управления и защиты). Они состоят из материалов, сильно поглощающих нейтроны, например из бора или кадмия. Теплоносителем в реакторе служит вода, жидкий натрий и др. Теплоноситель в парогенераторе отдает свое тепло пару, который поступает в паровую турбину. Турбина вращает электрический генератор, ток от которого поступает в электрическую сеть

Реакторы можно классифицировать по:

физическим признакам;

схемо-конструкционным признакам;

видам замедлителя;

видам теплоносителя;

назначению.

По физическим признакам различают реакторы:

на быстрых нейтронах со средней энергией E < 100 кэВ;

на промежуточных нейтронах (1 эВ < E < 10 кэВ);

на тепловых нейтронах (E = kT

38 ТЕРМОЯДЕРНЫЕ РЕАКЦИИ. ВОДОРОДНАЯ БОМБА. ПРОБЛЕМЫУПРАВЛЯЕМОГО ТЕРМОЯДЕРНОГО СИНТЕЗА

ТЕРМОЯДЕРНЫЕ РЕАКЦИИ

ВОДОРОДНАЯ БОМБА

Водородная бомба (Hydrogen Bomb, HB) — оружие массового поражения, обладающее невероятной разрушительной силой (мощность оценивается мегатоннами в тротиловом эквиваленте). Принцип действия бомбы и схема строения базируется на использовании энергии термоядерного синтеза ядер водорода. Процессы, протекающие во время взрыва, аналогичны тем, что протекают на звёздах (в том числе и на Солнце). Первое испытание пригодной для транспортировки на большие расстояния HB (проекта Сахарова А.Д.) было проведено в Советском Союзе на полигоне под Семипалатинском.

ПРОБЛЕМЫУПРАВЛЯЕМОГО ТЕРМОЯДЕРНОГО СИНТЕЗА

УПРАВЛЯЕМЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ (УТС) - процесс слияния лёгких атомных ядер, проходящий с выделением энергии при высоких темп-pax в регулируемых управляемых условиях

Исследования в области УТС сталкиваются с большими трудностями как чисто физ,, так и техн. характера. К первым относится уже упомянутая проблема устойчивости горячей плазмы, помещённой в магн. ловушку. Применение сильных магн. полей спец. конфигурации позволило подавить мн. виды макроскопич. неустойчивостей, но окончат. решение вопроса пока отсутствует.

В частности, для интересной и важной системы - токамак- остаётся т. н. проблема "большого срыва", при к-рой плазменный токовый шнур сначала стягивается к оси камеры, затем ток прерывается за неск. мс и на стенки камеры сбрасывается большая энергия. Кроме теплового удара камера испытывает при этом и механич. удар.

Серьёзную трудность представляет также образование пучков быстрых электронов, оторванных от осн. ансамбля электронов плазмы. Эти пучки приводят к сильному возрастанию потоков тепла и частиц поперёк поля. В сверхбыстродействующих системах также наблюдается образование группы быстрых электронов в плазменной короне, окружающей мишень. Эти электроны успевают преждевременно нагреть центральные зоны мишени, препятствуя достижению необходимой степени сжатия и последующего запрограммированного протекания ядерных реакций. Осн. трудность в этих системах-осуществление устойчивого сферически-симметричного сжатия мишеней.

Ещё одна трудность связана с проблемой примесей. Эл--магн. излучение при используемых значениях п и Т плазмы и возможных размерах реактора свободно покидает плазму, но для чисто водородной плазмы эти энергетич. потери, определяемые в осн. тормозным излучением электронов, в случае (d, 1)-реакций перекрываются ядерным энерговыделением уже при темп-pax выше 4-107 К. Однако даже малая добавка чужеродных атомов с большим Z, к-рые при рассматриваемых темп-pax находятся в сильно ионизованном состоянии, приводят к возрастанию энергетич. потерь выше допустимого уровня. Требуются чрезвычайные усилия (непрерывное совершенствование вакуумных установок, использование тугоплавких и труднораспыляемых веществ, таких, напр., как графит, вольфрам, молибден, в качестве материала диафрагм, применение устройств для улавливания атомов примесей и т. д.), чтобы содержание примесей в плазме оставалось ниже допустимого уровня (=<0,1%). Для инер-циальных систем-предотвращение перемешивания вещества сжимающей оболочки с термоядерным топливом на конечных стадиях сжатия.

39 ВИДЫФУНДАМЕНТАЛЬНЫХ ВЗАИМОДЕЙСТВИЙ В ПРИРОДЕ

Фундамента́льные взаимоде́йствия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.На сегодня достоверно известно существование четырёх фундаментальных взаимодействий (не считая поля Хиггса):

гравитационного;

электромагнитного;

сильного;

слабого.

При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействияВедутся поиски других типов фундаментальных взаимодействий, как в явлениях микромира, так и в космических масштабах, однако пока какого-либо другого типа фундаментального взаимодействия не обнаружено

40 ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: