При построении эпюр и
в консольных, или жестко защемленных, балках нет необходимости вычислять опорные реакции, возникающие в жесткой заделке, но выбирать отсеченную часть нужно так, чтобы заделка в нее не попадала.
Рассмотрим балку длиной l защемленную одним концом и находящуюся под действием сосредоточенной силы Р (рис.6.17). Пусть для определенности Р= 4 кН, l = 2 м.
Рис.6.17
Определим внутренние силовые факторы, возникающие в балке. Воспользуемся методом сечением.
Рассечем балку поперечным сечением в произвольном месте.
Отбросим правую часть.
Заменим ее действие внутренними усилиями N - вдоль оси z, - вдоль оси y и моментом
– в плоскости осей yz вокруг оси х. На рис.6.17 в соответствии с принятым правилом знаков показаны положительные направления внутренних силовых факторов.
Уравновесим отсеченную часть. Запишем уравнения статического равновесия, получим
,
,
,
,
,
,
,
.
Из первого уравнения видно, что нормальная сила N при изгибе равна нулю, далее не будем ее определять.
Построим эпюры поперечной силы Qy и изгибающего момента Mx вдоль длины балки.
Поперечная сила постоянна по всей длине балки и равна Qy = P = 4 кН. Отложим на графике линию параллельную оси z.
Изгибающий момент Мх изменяется в зависимости от расстояния z. Вычислим его значение в двух точках: в начале z = 0 и в конце балки z = l = 2 м.
z = 0 (Мх = 0);
z = 2 м (Мх = 8 кНм).
Построим по точкам график Мх.
Построение эпюр поперечной силы Qy и изгибающего момента Mx является одним из основных этапов при расчете конструкций на изгиб. По эпюрам Qy и Mx определяется опасное сечение, т.е. сечение в котором может произойти разрушение.
Опасным сечением называется сечение, в котором изгибающий момент достигает наибольшего по модулю значения. .
В некоторых случаях опасным сечением может быть также сечение, где наибольшего значения достигает поперечная сила . В данном случае опасным является место закрепления балки.
Пример 2.
Построить эпюры и
(рис.6.18).
Рис. 6.18
Порядок расчета.
1. Намечаем характерные сечения.
2. Определяем поперечную силу в каждом характерном сечении.
По вычисленным значениям строим эпюру .
3. Определяем изгибающий момент в каждом характерном сечении.
По вычисленным значениям строим эпюру , причем, на участке под распределенной нагрузкой эпюра будет криволинейной (квадратная парабола). Выпуклость кривой на этом участке всегда обращена навстречу распределенной нагрузке.
Пример 3.
Построить эпюры ,
(рис.6.19).
В данном случае для правильного построения эпюры необходимо использовать приведенные выше дифференциальные зависимости.
Порядок расчета.
1. Намечаем характерные сечения.
2. Определяем поперечные силы в характерных сечениях.
3. Строим эпюру .
Характер эпюры, то есть тот факт, что эпюра пересекает ось, говорит о том, что в этом сечении момент
будет иметь экстремальное значение. Действительно, пересечение эпюры с осью z означает, что в этом сечении
, а из курса математики известно, что если производная функции равна нулю, то сама функция в данной точке имеет экстремальное значение.
Для определения положения “нулевого” сечения необходимо величину расположенной слева от него ординаты эпюры разделить на интенсивность распределенной нагрузки
:
Рис. 6.19
Определяем изгибающие моменты в характерных сечениях.
4. Вычисляем экстремальное значение изгибающего момента в сечении, где
Строим эпюру .
В отличие от консольных балок, при расчете балок на двух шарнирных опорах необходимо сначала определить опорные реакции из уравнений статики, так как и в левую, и в правую отсеченные части для любого сечения, расположенного между опорами, попадает соответствующая реакция.
Для плоской системы число уравнений статики в общем случае равно трем. Если балка загружена только вертикальными нагрузками, то горизонтальная реакция шарнирно-неподвижной опоры равна нулю, и одно из уравнений равновесия обращается в тождество. Таким образом, для определения реакций в опорах шарнирной балки используются два уравнения статики:
Условие используется для проверки вычисленных значений опорных реакций.
Рассмотрим примеры построения эпюр Qy и Mx.
Пример 4.
Для представленной на рис.6.21 балки построить эпюры внутренних сил, найти опасные сечения.
Рис.6.21
Решение.
Определим реакции опор. Заменим распределенную нагрузку q её равнодействующей G=2qa, приложим G в середине участка АС (рис.6.22).
Запишем уравнение равновесия.
Рис.6.22
;
;
.
Отсюда находим:
;
.
Выполним проверку правильности определения реакций опор.
;
;
0 º 0.
Используя метод сечений, рассмотрим сечения участков балки (рис.6.23).
Рис.6.23
1 участок:
;
.
.
Вычислим Qy1 и Mx2 на границах участка.
,,
;
,
,
;
2 участок:
;
.
;
.
На границах участка получим
,
,
;
,
,
;
Построим эпюры Qy и Mx на участках. Из выражений для внутренних усилий следует, что Qy, эпюра является прямолинейной как на первом, так и на втором участках, в то время как эпюра Мх на первом участке квадратичная парабола, а на втором прямая линия. Для построения эпюры Мх на первом участке следует либо вычислить её значения в нескольких точках, либо исследовать функцию на экстремум и определить его.
Как известно из курса математического анализа, для определения экстремума функции следует определить ее первую производную, приравняв ее нулю найти аргумент, затем его значение подставить в функцию и вычислить экстремум функции.
,
,
,
.
Отложим значение Мх max и построим эпюру изгибающего момента на первом участке по трем точкам (рис.6.23). По эпюре находим опасное сечение. Им является сечение, где .
Пример 5.
Построить эпюры ,
для балки с шарнирным опиранием (рис.6.24).
Рис. 6.24
Порядок расчета.
1. Вычисляем реакции опор.
Проверка:
2. Намечаем характерные сечения.
В отличие от консольных балок здесь известны обе опорные реакции, поэтому для любого сечения можно рассматривать как левую, так и правую отсеченную часть.
3. Определяем поперечные силы в характерных сечениях.
Строим эпюру .
4. Определяем изгибающие моменты в характерных сечениях.
Строим эпюру
Пример 6.
Построить эпюры и
для балки на двух опорах с консолью (рис.6.25, а)
Порядок расчета.
1. Вычисляем опорные реакции.
Во втором уравнении равновесия (впрочем, как и в первом) момент от распределенной нагрузки вычислен без разбиения ее на две части - слева и справа от опоры В, то есть определена равнодействующая нагрузки
, ее положение (в середине участка с распределенной нагрузкой), что позволяет определить плечо равнодействующей относительно опоры В и направление создаваемого ею момента. В то же время можно было в уравнении равновесия учитывать отдельно части нагрузки
, приложенные слева и справа от опоры В; при этом второе уравнение равновесия имеет вид:
Рис.6.25
Вычисленное из этого уравнения значение реакции , разумеется, совпадает с полученным ранее.
Проверка:
2. Намечаем характерные сечения.
3. Вычисляем поперечную силу и изгибающий момент в характерных сечениях.
Из рассмотрения левой отсеченной части:
Для сечений 5-7 удобнее рассматривать правую отсеченную часть:
По вычисленным значениям строим эпюры и
(рис.6.25, б,в)