Из белой краски – красная




Свинцовые белила умели изготовлять 3 тыс. лет назад. Основным поставщиком их в древнем мире был остров Родос в Средиземном море. Красок тогда не хватало, и стоили они чрезвычайно дорого. Прославленный греческий художник Никий однажды с нетерпением ожидал прибытия белил с Родоса. Драгоценный груз прибыл в афинский порт Пирей, но там неожиданно вспыхнул пожар. Пламя охватило корабли, на которых были привезены белила. Когда пожар погасили, расстроенный художник поднялся на палубу одного из пострадавших кораблей. Он надеялся, что не весь груз погиб, мог же уцелеть хотя бы один бочонок с нужной ему краской. Действительно, в трюме нашлись бочки с белилами: они не сгорели, но сильно обуглились. Когда бочки вскрыли, то удивлению художника не было границ: в них была не белая краска, а ярко-красная! Так пожар в порту подсказал путь изготовления замечательной краски – сурика.

Свинец и газы

При плавке того или иного металла приходится заботиться об удалении из расплава газов, так как иначе получается низкокачественный материал. Добиваются этого различными технологическими приемами. Выплавка же свинца в этом смысле никаких хлопот металлургам не доставляет: кислород, азот, сернистый газ» водород, окись углерода, углекислый газ, углеводороды не растворяются ни в жидком, ни в твердом свинце.

«Свинцовая мечеть»

В древности при строительстве зданий или оборонительных сооружений камни нередко скрепляли расплавленным свинцом. В селении Старый Крым и сейчас сохранились руины так называемой свинцовой мечети, сооруженной в XIV столетии. Такое название здание получило оттого, что зазоры в каменной кладке залиты свинцом.


Олово

 

Олово – один из немногих металлов, известных человеку еще с доисторических времен. Олово и медь были открыты раньше железа, а сплав их, бронза, – это, по-видимому, самый первый «искусственный» материал, первый материал, приготовленный человеком.

Результаты археологических раскопок позволяют считать, что еще за пять тысячелетий до нашей эры люди умели выплавлять и само олово. Известно, что древние египтяне олово для производства бронзы возили из Персии.

Под названием «трапу» этот металл описан в древнеиндийской литературе. Латинское название олова stannum происходит от санскритского «ста», что означает «твердый».

Упоминание об олове встречается и у Гомера. Почти за десять веков до новой эры финикияне доставляли оловянную руду с Британских островов, называвшихся тогда Касситеридами. Отсюда название касситерита – важнейшего из минералов олова; состав его SnO2. Другой важный минерал – станнин, или оловянный колчедан, Cu2FeSnS4. Остальные 14 минералов элемента №50 встречаются намного реже и промышленного значения не имеют. Между прочим, наши предки располагали более богатыми оловянными рудами, чем мы. Можно было выплавлять металл непосредственно из руд, находящихся на поверхности Земли и обогащенных в ходе естественных процессов выветривания и вымывания. В наше время таких руд уже нет. В современных условиях процесс получения олова многоступенчатый и трудоемкий. Руды, из которых выплавляют олово теперь, сложны по составу: кроме элемента №50 (в виде окисла или сульфида) в них обычно присутствуют кремний, железо, свинец, медь, цинк, мышьяк, алюминий, кальций, вольфрам и другие элементы. Нынешние оловянные руды редко содержат больше 1% Sn, а россыпи – и того меньше: 0,01...0,02% Sn. Это значит, что для получения килограмма олова необходимо добыть и переработать по меньшей мере центнер руды.

 

Свойства олова

 

Атомный номер…………………………...50

Атомная масса……………………………118,710

Изотопы

стабильные ………………………………..112, 114–120, 122, 124

нестабильные……………………………..108–111, 113, 121, 123, 125–127

Температура плавления, ° С……………..231,9

Температура кипения, ° С………………..262,5

Плотность, г/см3…………………….…….7,29

Твердость (по Бринеллю)………………...3,9

Содержание в земной коре, % (масс.)…...0,0004

 

Применение

Олово начали применять, вероятно, еще во времена Гомера и Моисея. Открытие его было связано, скорее всего, со случайным восстановлением наносного касситерита (оловянного камня); наносные отложения встречаются на поверхности или близко к ней, и оловянные руды намного легче восстанавливаются, чем руды других металлов. Древние бритты были хорошо знакомы с оловом: в Корнуолле на юго-западе Англии были обнаружены древние горны со шлаком. Металл был, очевидно, малодоступен и дорог, т.к. оловянные предметы редко встречаются среди римских и греческих древностей, хотя об олове говорится в Библии в Четвертой книге Моисеевой (Числа), а слово касситерит, которое и сегодня используется для обозначения оксидной оловянной руды, – греческого происхождения. Малакка и Восточная Индия упоминаются как источники олова в арабской литературе 8–9 вв. и различными авторами в 16 в. в связи с Великими географическими открытиями. История оловянных разработок в Саксонии и Богемии относится еще к 12 в., но в 17 в. 30-летняя война (1618–1648) разрушила эту промышленность. Производство впоследствии возобновили, но вскоре оно пришло в упадок из-за открытия богатых месторождений в Америке.

Бронза. Задолго до того как научились добывать олово в чистом виде, был известен сплав олова с медью – бронза, который получали, видимо, уже в 2500–2000 до н.э. Олово в рудах часто встречается вместе с медью, так что при плавке меди в Британии, Богемии, Китае и на юге Испании образовывалась не чистая медь, а ее сплав с некоторым количеством олова. Ранние медные плотничные инструменты (долото, тесло и др.) из Ирландии содержали до 1% Sn. В Египте медная утварь 12-й династии (2000 до н.э.) содержала до 2% Sn, по-видимому, как случайную примесь. Первобытная практика выплавки меди основывалась на использовании смеси медных и оловянных руд, в результате чего и получалась бронза, содержащая до 22% Sn.

В современном мире более трети добываемого олова расходуется на изготовление пищевой жести и емкостей для напитков. Жесть в основном состоит из стали, но имеет покрытие из олова обычно толщиной менее 0,4 мкм.

Сплавы. Одна треть олова идет на изготовление припоев. Припои – это сплавы олова в основном со свинцом в разных пропорциях в зависимости от назначения. Сплав, содержащий 62% Sn и 38% Pb, называется эвтектическим и имеет самую низкую температуру плавления среди сплавов системы Sn – Pb. Он входит в составы, используемые в электронике и электротехнике. Другие свинцово-оловянные сплавы, например 30% Sn + 70% Pb, имеющие широкую область затвердевания, используются для пайки трубопроводов и как присадочный материал. Применяются и оловянные припои без свинца. Сплавы олова с сурьмой и медью используются как антифрикционные сплавы (баббиты, бронзы) в технологии подшипников для различных механизмов. Современные оловянно-свинцовые сплавы содержат 90–97% Sn и небольшие добавки меди и сурьмы для увеличения твердости и прочности. В отличие от ранних и средневековых свинецсодержащих сплавов, современная посуда из cплавов олова безопасна для использования.

Покрытия из олова и его сплавов. Олово легко образует сплавы со многими металлами. Оловянные покрытия имеют хорошее сцепление с основой, обеспечивают хорошую коррозионную защиту и красивый внешний вид. Оловянные и оловянно-свинцовые покрытия можно наносить, погружая специально приготовленный предмет в ванну с расплавом, однако большинство оловянных покрытий и сплавов олова со свинцом, медью, никелем, цинком и кобальтом осаждают электролитически из водных растворов. Наличие большого диапазона составов для покрытий из олова и его сплавов позволяет решать многообразные задачи промышленного и декоративного характера.

Соединения. Олово образует различные химические соединения, многие из которых находят важное промышленное применение. Кроме многочисленных неорганических соединений, атом олова способен к образованию химической связи с углеродом, что позволяет получать металлоорганические соединения, известные как оловоорганические Водные растворы хлоридов, сульфатов и фтороборатов олова служат электролитами для осаждения олова и его сплавов. Оксид олова применяют в составе глазури для керамики; он придает глазури непрозрачность и служит красящим пигментом. Оксид олова можно также осаждать из растворов в виде тонкой пленки на различных изделиях, что придает прочность стеклянным изделиям (или уменьшает вес сосудов, сохраняя их прочность). Введение станната цинка и других производных олова в пластические и синтетические материалы уменьшает их возгораемость и препятствует образованию токсичного дыма, и эта область применения становится важнейшей для соединений олова. Огромное количество оловоорганических соединений расходуется в качестве стабилизаторов поливинилхлорида – вещества, используемого для изготовления тары, трубопроводов, прозрачного кровельного материала, оконных рам, водостоков и др. Другие оловоорганические соединения используются как сельскохозяйственные химикаты, для изготовления красок и консервации древесины.

 

Месторождение

Кительское олово - полиметаллическое месторождение

Местоположение. Основное месторождение расположено в Северном Приладожье на территории Питкярантского района Республики Карелия в 15 км к северо-западу от г. Питкяранта и в 250 км от Петрозаводска. Ближайшая железнодорожная станция Койрин-Оя находится в 1.5 км к югу от месторождения на линии Петрозаводск – Янисъярви - С.Петербург с выходом на магистраль Мурманск - С.Петербург через г.г. Питкяранта и Лодейное Поле. В районе широко развита сеть автомобильных дорог республиканского значения, выходящих на шоссе Питкяранта - Петрозаводск. Основная водная магистраль - Ладожское озеро - находится в 5.5 км южнее месторождения и входит в систему Беломорско - Балтийского канала, пропускающего суда типа река-море. В г. Питкяранта имеется причал, используемый для отгрузки щебня. В восточной части месторождения проходит линия электропередач 1 класса напряжением 110 кВ и местная ЛЭП напряжением 6 кВ.

Геологическая позиция. Месторождение находится в западной олово -полиметаллической подзоне Салминско – Уксинско - Кительской рудной зоны. Оловянное и сопутствующее оруденение локализовано в пределах пластообразной скарноворудной залежи, относящейся ко II подсвите питкярантской свиты нижнего протерозоя и обрамляющей с севера Койринойско - Питкярантский гнейсо - гранитовый купол. Восточная его часть и породы и породы обрамления "срезаны" гранитами рапакиви и пронизаны их силлоподобными апофизами. Все промышленно-значимое оловянное оруденение сосредоточено в южной части скарново-рудной залежи вблизи контакта скарнов с гнейсо-гранитами купола. Залежь характеризуется субширотным простиранием и крутым падением. С поверхности она повсеместно перекрыта чехлом четвертичных отложений мощностью 30 - 40 м.


Схема строения Кительского месторождения (план и разрезы):

1 - четвертичные отложения; 2 - граниты рапакиви (2 фаза) З – кварциты; полевошпат - биотитовые сланцы; 4 - кальцuфupы, мpaморы; 5-полевошпатамфиболовые, графитсодержащие кварц-биотитовые скарны; 6 - пироксеновые, гранатовые, гранат-пироксеновые, магнетит-пироксеновые скарны; 7-гнейсо-граниты.

Кроме Кительского месторождения, в Северном Приладожье выявлены Люппикковское, Хопунварское, Уксинское и др. проявления оловянно-полиметаллическтих руд скарнового типа, что свидетельствует о возможности значительного расширения здесь оловорудно-сырьевой базы.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-05-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: