Получение технологических газов




Синтез-газ из твердого топлива. Первым из основных источников сырья для получения синтез-газа явилось твердое топливо, которое перерабатывалось в газогенераторах водяного газа по следующим реакциям:

С + Н2О ↔ СО + Н2; ∆Н˃0; (I) C+ O2↔ CO2; ∆Н˂0 (II)

Такой способ получения заключается в попеременной подаче через слой крупнокускового твердого топлива (антрацита, кокса, полукокса) воздушного и парового дутья. Синтез-газ получают на стадии парового дутья, а необходимая температура слоя топлива достигается в течение стадии

воздушного дутья. Цикл работы генератора составляет 3—5 мин. Полученный водяной газ содержит 50—53% Н2 и ~36% СО. Для дальнейшего использования в производстве водяной газ необходимо очистить от сернистых соединений и провести конверсию оксида углерода по реакции

СО + Н2О ↔ СО22; ∆Н˂0; (III)

а затем удалить диоксид углерода полностью в случае его применения для синтеза аммиака или частично для синтеза метанола.

Недостатками процесса являются его периодичность, низкая единичная производительность газогенератора, а также высокие требования к сырью по количеству и температуре плавления золы, его гранулометрическому составу и другим характеристикам.

В промышленном масштабе были испытаны процессы газификации в кипящем слое мелкозернистных видов топлива. Дальнейшим усовершенствованием является газификация в кипящем слое на парокислородном дутье под давлением. В опытах по газификации углей Канско-Ачинского бассейна при давлении 2,0 МПа получен газ следующего состава (%): СО2 — 29,7; О2 - 0,2; СО- 20,2; Н2 — 42,3; СН4 — 7,0; N2 —0,6.

Другим направлением является газификация топлива в виде пыли. Этот процесс позволяет использовать практически любые виды топлива. Ег о особенностями являются, высокая турбулизация в зоне реакции за| счет подачи встречных потоков топливной смеси и хорошее смешение парокислородной смеси с топливной пылью.

Синтез-газ из жидких углеводородов. Получение синтез-газа из жидких углеводородов распространено в странах, бедных запасами природных газов. Так, например, в 1974 г. в Японии 67%, а в ФРГ 59% всего аммиака получено на базе переработки жидкого топлива. Очевидно, и в производстве метанола в аналогичных условиях жидкие топлива имеют такое же значение.

По технологическим схемам переработки в синтез-газ жидкие топлива можно разделить на две группы. Первая группа включает топлива, перерабатываемые высокотемпературной кислородной конверсией. Сюда относят тяжелые жидкие топлива — мазут, крекинг-остатки и т. п. Вторая группа — легкие прямоточные дистилляты (нафта), имеющие конечную температуру кипения не выше 200-220°С; она включает бензины, лигроины, смеси светлых дистиллятов. Вторая группа жидких топлив перерабатывается в синтез-газ каталитической конверсией водяным паром в трубчатых печах.

Высокотемпературная кислородная конверсия жидких топлив за рубежом осуществлена в процессах, в которых жидкое топливо под давлением проходит через подогреватель, откуда при 400 - 600°С поступает в газогенератор. Туда же подают и подогретый кислород, и перегретый водяной пар. В газогенераторе при температурах 1350–1450°С образуется синтез-газ, однако при этом выделяется также некоторое количество сажи. Газ очищают от сажи, а затем направляют на очистку от сернистых соединений. После этого газ, в состав которого входит 3—5% СО2, 45—48% СО, 40—45% Н2, а также определенные количества метана, азота и аргона, проходит конверсию СО и очистку от СО2. Процесс протекает под давлением, которое может достигать 15 МПа. Агрегаты имеют производительность 30 тыс. м3/ч (Н2 + СО) и более. Недостатками процесса являются высокий расход кислорода, выделение сажи, а также сложность технологической схемы.

Переработка в синтез-газ легко выкипающих жидких топлив каталитической конверсией водяным паром в трубчатых печах предусматривает в качестве первых технологических операций испарение

жидкого топлива и его тщательную очистку от примесей. Содержание сернистых соединений для последующей переработки не должно превышать 1 мг/кг углеводородного сырья. Далее пары углеводородов смешивают с перегретым водяным паром и подают в реакционные трубы трубчатой печи, заполненные никелевым катализатором. Процесс разработан в начале 60-х годов и широко используется в настоящее время за рубежом. Достоинствами его являются возможность получения синтез-газа под давлением, легкость регулирования состава синтез-газа, малый расход электроэнергии. К недостаткам можно отнести высокие требования к углеводородному составу исходного сырья по содержанию в нем непредельных и циклических углеводородов, серы и других примесей, большой удельный расход углеводородов.

Синтез-газ из природного газа. Синтез-газ из углеводородных газов (природного, попутного, газов переработки других топлив) в настоящее время является основным источником получения аммиака и метанола. По используемому окислителю и технологическому оформлению можно выделить следующие варианты процесса получения водород-содержащих газов: высокотемпературная кислородная конверсия, каталитическая парокислородная конверсия в шахтных реакторах, каталитическая пароуглекислотная конверсия в трубчатых печах.

 

Окисление метана (основного компонента углеводородных газов) при получении синтез-газа протекает по следующим основным суммарным реакциям:

CH4+0,5O2 = CO + 2H2; ΔH = —35,6кДж (IY)

СН4+ Н2О = СО + ЗН2; ΔН= 206,4 кДж (Y)

СН4+СО2 = 2СО + 2Н2; ΔH = 248,ЗкДж (YI)

Одновременно протекает реакция (III).

Аналогичным образом осуществляются реакции окисления гомологов метана.

В реальных условиях ведения процесса реакции (III), (V) и (VI) обратимы. Константа равновесия реакции (IV) в рабочем интервале температур весьма велика, т. е. можно считать, что реакция идет вправо до конца (кислород реагирует полностью). Реакции (IV)—(VI) протекают с увеличением объема. Так как следующие за конверсией метана процессы (очистку конвертированного газа, синтез) целесообразно вести при повышенном давлении, то для снижения затрат на сжатие предпочтительно конверсию метана проводить также под давлением.

Состав конвертированного газа должен удовлетворять определенным требованиям. Он характеризуется стехиометрическим показателем конверсии, который различен для разных производств и составляет

Продукт s

Аммиак............................. (H2+CO): N2 3,05—3,10

Метанол.............................(Н2+СО): (СО22О) 2,0—2,2

Высшие спирты……..…….Н2: СО 0,7—1,0.

Несмотря на существенно различные требования к конвертированному газу, все его разновидности могут быть получены каталитической конверсией углеводородов с водяным паром, диоксидом углерода, кислородом и воздухом.

Очистка природного газа от сернистых соединений. Присутствие сернистых соединений в технологических газах нежелательно. Во-первых, они являются сильнодействующими каталитическими ядами, во-вторых, наличие сернистых соединений вызывает коррозию аппаратуры. Природный газ ряда месторождений содержит значительное количество соединений серы - неорганических и органических. Из неорганических соединений в природном газе содержится только сероводород. Органические сернистые соединения, содержащиеся в природном газе весьма разнообразны. К ним принадлежат сульфидоксид углерода COS, сероуглерод CS2, тиофен C4H4S,

сульфиды R2S, дисульфиды R2S2, меркаптаны RSH (метилмеркаптан CH3SH, этил-меркаптан C2H5SH, тяжелые меркаптаны, например, CeH5SH).

На основании многочисленных исследований установлено, что чем больше молекулярная масса соединения, тем труднее оно удаляется из газа. Самым трудноудаляемым сераорганическим соединением является тиофен. Плохо удаляются также сульфиды, дисульфиды и тяжелые меркаптаны.

В связи с тем, что содержание в природном газе тяжелых меркаптанов, сульфидов и дисульфидов в несколько раз превышает допустимое содержание серы в газе перед трубчатой конверсией (1 мг/м3), в современных высокопроизводительных агрегатах синтеза аммиака

применяют двухстадийную сероочистку.

На первой стадии сераорганические соединения гидрируются с использованием алюмокобальтмолибденового или алюмоникель-молибденового катализатора при температуре 350–400°С и давлении 2-4 МПа. При гидрировании протекают следующие реакции:

C2H5SH + H2 = H2S + C2H6

C6H5SH + H2 = H2S + C6H6

C4H4S + 4H2 = H2S + C4H10

CS2 + 4H2 = 2H2S + CH4

COS + H2 = H2S + CO

CH3SC2H5 + 2H2 = H2S + CH4- C2H6

В условиях проведения процесса, приведенные выше реакции, можно считать необратимыми, т. е. практически достигается полное гидрирование.

На второй стадии образовавшийся сероводород при температуре 390—410°С поглощается поглотителем на основе оксида цинка (ГИАП-10):

H2S + ZnO = ZnS + H2O

реакция практически необратима и можно обеспечить высокую степень очистки газа.

При повышенном содержании сернистых соединений в природном газе применяется очистка адсорбционным методом с использованием синтетических цеолитов (молекулярных сит). Наиболее подходящим для сероочистки является цеолит марки.NaX, в состав которого входят оксиды NaO,A12O3, SiO2. Сорбция осуществляется при температуре, близкой к комнатной; регенерируют цеолиты при 300—400°С. Регенерация производится либо азотом, либо очищенным газом при постепенном увеличении температуры, причем основная масса серы (65%) выделяется при 120—200°С.

Аппараты, применяемые для сероочистки, могут быть как радиального, так и полочного или шахтного типа. На рис.1 приведена схема двухступенчатой сероочистки природного газа с использованием полочных адсорберов.

 

Рис.7.1. Схема двухступенчатой очистки природного газа:

1 — подогреватель; 2 — аппарат гидрирования; 3 - адсорбер с цинковым поглотителем, АВС – азотоводородная смесь.

Конверсия водяным паром. Равновесный состав газовой смеси определяется такими параметрами процесса, как температура и давление в системе, а также соотношением реагирующих компонентов. Паровая конверсия, как уже указывалось, может быть описана уравнением (V).

При атмосферном давлении и стехиометрическом соотношении исходных компонентов достаточно полная конверсия метана достигается при температурах около 800°С. При увеличении расхода водяного пара такой же степени разложения метана можно достичь при более низких температурах.

Применение давления существенно снижает полноту конверсии. Так, при давлении 3 МПа достаточно полная конверсия наблюдается лишь при температуре около 1100 °С.

В современных установках при давлении 2 МПа и выше при соотношении (СН42) = 1:4 остаточное содержание метана после паровой конверсии составляет 8—10%. Для достижения остаточного содержаний СН4около 0,5% конверсию ведут в две стадии: паровая конверсия под давлением {первая стадия) и паровоздушная конверсия с использованием кислорода воздуха (вторая стадия). При этом получается синтез-газ стехиометрического состава и отпадает необходимость в разделении воздуха для получения технологического кислорода и азота.

Рис.7.2. Технологическая схема конверсии метана:

1 – трубчатая печь; 2 – шахтный реактор; 3 – котел-утилизатор; 4 – смеситель; 5 – 7 - подогреватели

 

Конверсия метана кислородом. Для получения водорода конверсией метана кислородом необходимо провести процесс по реакции неполного окисления метана. Реакция протекает в две стадии

1) СН4 + 0,5О2 ↔ СО + 2 Н2; ∆Н = -35,6 кДж

СН4 + 2О2 СО2 + 2 Н2О; ∆Н = - 800 кДж

2) СН42О ↔ СО + 3Н2; ∆Н = 206,4 кДж

СН4 + СО2 ↔ 2СО + 2 Н2; ∆Н = 246 кДж

Значения констант равновесия реакций первой стадии настолько велики, что эти реакции можно считать практически необратимыми. В связи с этим повышение концентрации кислорода в газовой смеси сверх стехиометрического не приводит к увеличению выхода продуктов.

Повышение давления при конверсии кислородом, как и при конверсии водяным паром, термодинамически нецелесообразно; чтобы при повышенных давлениях добиться высокой степени превращения метана, необходимо проводить процесс при более высоких температурах.

Рассмотренные процессы конверсии метана водяным паром и кислородом протекают с различным тепловым эффектом: реакции паровой конверсии эндотермические, требуют подвода теплоты; реакции кислородной конверсии экзотермические, причем выделяющейся теплоты достаточно не только для автотермического осуществления собственно кислородной конверсии, но и для покрытия расхода теплоты на эндотермические реакции паровой конверсии. Поэтому конверсию метана

целесообразно проводить со смесью окислителей.

Парокислородная, парокислородовоздушная и паровоздушная конверсия метана. Автотермический процесс (без подвода теплоты извне) может быть осуществлен путем сочетанияконверсии метана в соответствии с экзотермической реакцией (IV) и эндотермической (V). Процессназывается парокислородной конверсией, если в качестве окислителей используют водяной пар икислород, и парокислородовоздушной, если в качестве окислителей используют водяной пар,кислород и воздух.Как тот, так и другой процесс нашли применение в промышленной практике. При проведениипарокислородной конверсии получают безазотистый конвертированный газ, при проведениипарокислородовоздушной конверсии — конвертированный газ, содержащий азот в таком количестве,которое необходимо для получения стехиометрической азотоводородной смеси для синтеза аммиака,т. е. 75% водорода и 25% азота.

Катализаторы конверсии метана. Скорость взаимодействия метана с водяным паром и диоксидом углерода без катализатора чрезвычайно мала. В промышленных условиях процесс ведут в присутствии катализаторов, которые позволяют не только значительно ускорить реакции конверсии, но

и при соответствующем избытке окислителей позволяют исключить протекание реакции: СН4 = С + 2Н2.

Катализаторы отличаются друг от друга не только содержанием активного компонента, но также видом и содержанием других составляющих — носителей и промоторов.

Наибольшей каталитической активностью в данном процессе обладают никелевые катализаторы на носителе — глиноземе (А12О3). Никелевые катализаторы процесса конверсии метана выпускают в виде таблетированных и экструдированных колец Рашига. Так, катализатор ГИАП-16 имеет следующий состав: 25% NiO, 57%, А12О3, 10%СаО, 8% MgO. Срок службы катализаторов конверсии при правильной эксплуатации достигает трех лет и более. Их активность снижается при действии различных каталитических ядов. Никелевые катализаторы наиболее чувствительны к действию сернистых соединений. Отравление происходит вследствие образования на поверхности катализатора сульфидов никеля, совершенно неактивных по отношению к реакции конверсии метана и его гомологов. Отравленный серой катализатор удается почти полностью регенерировать в определенных температурных условиях при подаче в реактор чистого газа. Активность зауглероженного катализатора можно восстановить, обрабатывая его водяным паром.

Как тот, так и другой процесс нашли применение в промышленной практике. При проведении парокислородной конверсии получают безазотистый конвертированный газ, при проведении парокислородовоздушной конверсии — конвертированный газ, содержащий азот в таком количестве, которое необходимо для получения стехиометрической азотоводородной смеси для синтеза аммиака, т. е. 75% водорода и 25% азота. Катализаторы конверсии метана. Скорость взаимодействия метана с водяным паром и диоксидом углерода без катализатора чрезвычайно мала. В промышленных условиях процесс ведут в присутствии катализаторов, которые позволяют не только значительно ускорить реакции конверсии, но и при соответствующем избытке окислителей позволяют исключить протекание реакции: СН4 = С + 2Н2. Катализаторы отличаются друг от друга не только содержанием активного компонента, но также видом и содержанием других составляющих — носителей и промоторов.

Наибольшей каталитической активностью в данном процессе обладают никелевые катализаторы на носителе — глиноземе (А12О3). Никелевые катализаторы процесса конверсии метана выпускают в виде таблетированных и экструдированных колец Рашига. Так, катализатор ГИАП-16 имеет следующий состав: 25% NiO, 57% А1 2О 3, 10%СаО, 8% MgO. Срок службы катализаторов конверсии при правильной эксплуатации достигает трех лет и более. Их активность снижается при действии различных каталитических ядов. Никелевые катализаторы наиболее чувствительны к действию сернистых соединений. Отравление происходит вследствие образования на поверхности катализатора сульфидов никеля, совершенно неактивных по отношению к реакции конверсии метана и его гомологов. Отравленный серой катализатор удается почти полностью регенерировать в определенных температурных условиях при подаче в реактор чистого газа. Активность зауглероженного катализатора можно восстановить, обрабатывая его водяным паром.

Конверсия оксида углерода. Процесс конверсии оксида углерода водяным паром протекает по уравнению (III). Как было показано выше, эта реакция частично осуществляется уже на стадии паровой конверсии метана, однако степень превращения оксида углерода при этом очень мала и в выходящем газе содержится до 11,0% СО и более. Для получения дополнительных количеств водорода и снижения до минимума концентрации оксида углерода в конвертированном газе осуществляют самостоятельную стадию каталитической конверсии СО водяным паром. В соответствии с условиями термодинамического равновесия повысить степень конверсии СО можно удалением диоксида углерода из газовой смеси, увеличением содержания водяного пара или проведением процесса при возможно низкой температуре. Конверсия оксида углерода, как видно из уравнения реакции, протекает без изменения объема, поэтому повышение давления не вызывает смещения равновесия. Вместе с тем проведение процесса при повышенном давлении оказывается экономически целесообразным, поскольку увеличивается скорость реакции, уменьшаются размеры аппаратов, полезно используется энергия ранее сжатого природного газа.

Процесс конверсии оксида углерода с промежуточным удалением диоксида углерода применяется в технологических схемах производства водорода в тех случаях, когда требуется получить водород с минимальным количеством примеси метана. Концентрация водяного пара в газе обычно определяется количеством, дозируемым на конверсию метана и оставшимся после ее протекания. Соотношение пар: газ перед конверсией СО в крупных агрегатах производства аммиака составляет 0,4—0,5. Проведение процесса при низких температурах — рациональный путь повышения равновесной степени превращения оксида углерода, но возможный только при наличии высокоактивных катализаторов. Следует отметить, что нижний температурный предел процесса ограничен условиями конденсации водяного пара. В случае проведения процесса под давлением 2—3 МПа этот предел составляет 180—200°С. Снижение температуры ниже точки росы вызывает конденсацию влаги на катализаторе, что нежелательно.

Реакция конверсии СО сопровождается значительным выделением теплоты, что обусловило проведение процесса в две стадии при разных температурных режимах на каждой. На первой стадии высокой температурой обеспечивается высокая скорость конверсии большого количества оксида углерода; на второй стадии при пониженной температуре достигается высокая степень конверсии оставшегося СО. Теплота экзотермической реакции используется для получения пара. Таким образом, нужная степень конверсии достигается при одновременном сокращении расхода пара.

Температурный режим на каждой стадии конверсии определяется свойствами применяемых катализаторов. На первой стадии используется железохромовый катализатор, который выпускается в таблетированном и формованном видах. В промышленности широко применяется среднетемпературный железохромовый катализатор. Для железохромового катализатора ядами являются сернистые соединения. Сероводород реагирует с Fe3O4, образуя сульфид железа FeS. Органические сернистые соединения в присутствии железохромового катализатора взаимодействуют с водяным паром с образованием сероводорода. Помимо сернистых соединений отравляющее действие на железохромовый катализатор оказывают соединения фосфора, бора, кремния, хлора. Низкотемпературные катализаторы содержат в своем составе соединения меди, цинка, алюминия, иногда хрома. Известны двух-, трех-, четырех- и многокомпонентные катализаторы. В качестве добавок к указанным выше компонентам применяются соединения магния, титана, палладия, марганца, кобальта и др. Содержание меди в катализаторах колеблется от 20 до 50% (в пересчете на оксид). Наличие в низкотемпературных катализаторах соединений алюминия, магния, марганца сильно повышает их стабильность, делает более устойчивыми к повышению температуры. Перед эксплуатацией низкотемпературный катализатор восстанавливают оксидом углерода или водородом. При этом формируется его активная поверхность. Оксид меди и другие соединения меди восстанавливаются с образованием мелкодисперсной металлической меди, что, по мнению многих исследователей, и обусловливает его каталитическую активность. Срок службы низкотемпературных катализаторов обычно не превышает двух лет. Одной из причин их дезактивации является рекристаллизация под действием температуры и реакционной среды. При конденсации влаги на катализаторе происходит снижение его механической прочности и активности. Потеря механической прочности сопровождается разрушением катализатора и ростом гидравлического сопротивления реактора. Соединения серы, хлора, а также ненасыщенные углеводороды и аммиак вызывают отравление низкотемпературных катализаторов. Концентрация сероводорода не должна превышать 0,5 мг/м3 исходного газа. Технологическое оформление конверсии природного газа. В настоящее время в азотной промышленности используются технологические схемы конверсии природного газа при повышенном давлении, включающие конверсию оксида углерода.

Рис.7.4 Технологическая схема конверсии прродного газа: 1 – копрессор природного газа; 2 – огневой подогреватель; 3 – реактор гидрирования сернистых соединений; 4 – адсорбер; 5 –дымосос; 6,7,9,10 – подогреватели природного газа, питательной воды, паровоздушной и парогазовой смесей соответственно; 8 – пароперегреватель; 11 – реакционные трубы; 12 – трубчатая печь (конвертор метана первой ступени); 13 – шахтный конвертор метана второй ступени; 14,16 – паровые котлы; 15,17 – конверторы оксида углерода перовй и второй ступеней; 18 – теплообменник; 19 – компрессор

На рис.7.4 приведена схема агрегата двухступенчатой конверсии СН4 и СО под давлением производительностью 1360 т/сут аммиака. Природный газ сжимают в компрессоре 1 до давления 4,6 МПа, смешивают с азотоводородной смесью (АВС:газ—1:10) и подают в огневой подогреватель 2, где реакционная смесь нагревается от 130 - 140°С до 370 - 400°С. Для обогрева используют природный или другой горючий газ. Далее нагретый газ подвергают очистке от сернистых соединений: в реакторе 3 на алюмокобальтмолибденовом катализаторе проводится гидрирование сераорганических соединений до сероводорода, а затем в адсорбере 4 сероводород поглощается сорбентом на основе оксида цинка. Обычно устанавливают два адсорбера, соединенные последовательно или параллельно. Один из них может отключаться на загрузку свежего сорбента. Содержание H 2S в очищенном газе не должно превышать 0,5 мг/м3 газа.

Очищенный газ смешивается с водяным паром в отношении 1: 3,7 и полученная парогазовая смесь поступает в конвекционную зону трубчатой печи 12. В радиационной камере печи размещены трубы, заполненные катализатором конверсии метана, и горелки, в которых сжигается природный или горючий газ. Полученные в горелках дымовые газы обогревают трубы с катализатором, затем теплота этих газов дополнительно рекуперируется в конвекционной камере, где размещены подогреватели парогазовой и паровоздушной смеси, перегреватель пара высокого давления, подогреватели питательной воды высокого давления и природного газа.

Парогазовая смесь нагревается в подогревателе 10 до 525°С и затем под давлением 3.7 МПа распределяется сверху вниз по большому числу параллельно включенных труб, заполненных катализатором. Выходящая из трубчатого реактора парогазовая смесь содержит — 10%СН4. При температуре 850°С конвертированный газ поступает в' конвертор метана второй ступени 13 - реактор шахтного типа. В верхнюю часть конвертора 13 компрессором 19 подается технологический воздух, нагретый в конвекционной зоне печи до 480—500°С. Парогазовая и паровоздушная смеси поступают в реактор раздельными потоками в соотношении, требуемом для обеспечения практически полной конверсии метана и получения технологического газа с отношением (СО-Н2):N2 — 3,05--3.10. Содержание водяного пара соответствует отношению пар: газ= 0,7: I. При температуре около 1000°С газ направляется в котел-утилизатор 14, вырабатывающий пар давлением 10,5 МПа. Здесь реакционная смесь охлаждается до 380— 420°C и идет в конвертор СО первой ступени 15, где на железохромовом катализаторе протекает конверсия основного количества оксида углерода водяным паром. Выходящая из реактора при температуре 450° С газовая смесь содержит около 3,6% СО. В паровом котле 16, в котором также вырабатывается пар, парогазовая смесь охлаждается до 225° С и подается в конвертор СО второй ступени 17, заполненный низкотемпературным катализатором, где содержание СО снижается до 0,5%. Конвертированный газ на выходе из конвертора 17 имеет следующий состав (%): Н 2 -61,7; СО - 0.5; CO.- 17,4; N2 + Аг -20,1; СН 4 - 0,3. После охлаждения и дальнейшей утилизации теплоты конвертированный газ при температуре окружающей среды и давлении 2,6 МПа поступает на очистку.

Двухступенчатая паровая и паровоздушная каталитическая конверсия углеводородных газов и оксида углерода под давлением является первой стадией энерготехнологической схемы производства аммиака. Теплота химических процессов стадий конверсии СН4, СО, метанирования и синтеза аммиака используется для нагрева воды высокого давления и получения перегретого пара давлением 10,5 МПа. Этот пар, поступая в паровые турбины, приводит в движение компрессоры и насосы производства аммиака, а также служит для технологических целей. Основным видом оборудования агрегата конверсии является трубчатая печь. Трубчатые печи различаются по давлению, типу трубчатых экранов, форме топочных камер, способу обогрева, расположению камер конвективного подогрева исходных потоков. В промышленной практике распространены следующие типы трубчатых печей: многорядная, террасная двухъярусная, многоярусная с внутренними перегородками, с панельными горелками. В современных производствах синтетического аммиака и метанола чаще всего применяют прямоточные многорядные трубчатые печи с верхним пламенным обогревом.

 

Синтез аммиака

Рассмотрим элементарную технологическую схему современного производства аммиака при среднем давлении производительностью 1360 т/сутки. Режим ее работы характеризуется следующими параметрами: температура контактирования 450-550°С, давление 32 МПа, объемная скорость газовой смеси 4*104нм33*ч, состав азотоводородной смеси стехиометрический.

Смесь свежей АВС и циркуляционного газа под давлением подается из смесителя 3 в конденсационную колонну 4, где из циркуляционного газа конденсируется часть аммиака, откуда поступает в колонну синтеза 1. Выходящий из колонны газ, содержащий до 0.2 об. дол. аммиака направляется в водяной холодильник-конденсатор 2 и затем в газоотделитель 5, где из него отделяется жидкий аммиак. Оставшийся газ после компрессора смешивается со свежей АВС и направляется сначала в конденсационную колонну 4, а затем в испаритель жидкого аммиака 6, где при охлаждении до –20°С также конденсируется большая часть аммиака. Затем циркуляционный газ, содержащий около 0.03 об. дол. аммиака, поступает в колонну синтеза 1. В испарителе 6, одновременно с охлаждением циркуляционного газа и конденсацией содержащегося в нем аммиака, происходит испарение жидкого аммиака с образованием товарного газообразного продукта.

Основной аппарат технологической схемы - колонна синтеза аммиака, представляющая собой реактор идеального вытеснения Колонна состоит из корпуса и насадки различного устройства, включающей катализаторную коробку с размещенной в ней контактной массой и систему теплообменных труб. Для процесса синтеза аммиака существенное значение имеет оптимальный температурный режим. Для обеспечения максимальной скорости синтеза процесс следует начинать при высокой температуре и по мере увеличения степени превращения понижать ее. Регулирование температуры и обеспечение автотермичности процесса обеспечивается с помощью теплообменников, расположенных в слое контактной массы и дополнительно, подачей части холодной АВС в контактную массу, минуя теплообменник.

Рис.7.5.Технологическая схема синтеза аммиака: 1-колонна синтеза, 2- водяной конденсатор, 3 – смеситель свежей АВС и циркуляционного газа, 4-конденсационная колонна, 5- газоотделитель, 6 – испаритель жидкого аммиака, 7-котел-утилизатор, 8- турбоциркуляционный компрессор.

 

Применение аммиака. Аммиак - ключевой продукт для получения многочисленных азотсодержащих веществ, применяемых в промышленности, сельском хозяйстве и быту. На основе аммиака в настоящее время производятся практически все соединения азота, используемые в качестве целевых продуктов и полупродуктов неорганической и органической технологии.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: