Взаимное положение прямой и плоскости (прямые параллельные и перпендикулярные плоскости). Проецирование прямого угла.




Прямая параллельна плоскости, если она параллельна какой-нибудь прямой, принадлежащей данной плоскости. Прямая перпендикулярна к плоскости, если она перпендикулярна ко всем двум прямым, которые пересекаются в этой плоскости принадлежат ей. Но, чтобы при этом проекция перпендикуляра к плоскости общего положения оказалась перпендикулярной к соответственной проекции некоторой прямой этой плоскости, прямая должна быть горизонталью или фронталью, или профильной прямой плоскости. Поэтому, если надо построить перпендикуляр к плоскости, берут в общем случае две такие прямые. Таким образом, у перпендикуляра к плоскости его горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали, фронтальная проекция перпендикулярна к фронтальной проекции фронтали. Очевидно, если плоскость задана следами, мы получаем следующий результат: если прямая перпендикулярна к плоскости, то горизонтальная проекция этой прямой перпендикулярна горизонтальному следу плоскости, а фронтальная проекция перпендикулярна к фронтальному следу плоскости. Если через точку D надо провести прямую L (1′, 1″), перпендикулярную к плоскости, заданой r АВС нужно выполнить следующие построения:

1) Провести в плоскости горизонталь С1 (С′1′, С″1″) и фронталь А2 (А′2′, А″2″);

2) Через горизонтальную проекцию D′ точки D провести прямую 1′, перпендикулярную к горизонтальной проекции горизонтали С′1′, — это будет горизонтальная проекция перпендикуляра;

3) Через фронтальную проекцию D″ точки D провести прямую 1″, перпендикулярную к фронтальной проекции фронтали А″2″, — фронтальная проекция перпендикуляра. Построенная прямая L (1′, 1″) и есть перпендикуляр к плоскости r АВС.

 

11. Способы преобразования проекций: перемена плоскостей проекций; вращение вокруг проецирующей прямой; вращение вокруг линий уровня; плоскопараллельное перемещение; совмещение. Задачи: а) прямая общего положения преобразуется в прямую уровня; б) прямая уровня преобразуется в проецирующую прямую; в) плоскость общего положения преобразуется в проецирующую плоскость; г) проецирующая плоскость преобразуется в плоскость уровня. Способ плоскопараллельного перемещения.

Сущность этого способа заключается в перемещении геометрической фигуры относительно данных плоскостей проекций в частное положение таким образом, чтобы траектория перемещения всех ее точек находилась в параллельных плоскостях. Плоскопараллельное перемещение — общий случай вращения без указания местоположения оси. При параллельным переносе геометрической фигуры относительно плоскостей проекций проекция фигуры на эту плоскость хоть и изменяет свое положение, но не изменяется по форме и размерах.

Способ замены плоскостей.

Сущность этого способа заключается в переходе от данной системы плоскостей проекций П1/П2к новой. Проецируемая фигура при этом не меняет своего положения в пространстве. Одна из основных плоскостей проекций П1или П2заменяется новой плоскостью, размещенной определенным образом относительно неподвижного объекта проецирования. Поскольку в новой системе плоскостей проекций проецирование остается прямоугольным, то новая плоскость должна быть перпендикулярной к незамененной плоскости проекций П1или П2.

Способ вращения вокруг проецирующих прямых.

Сущность способа заключается в том, что данная система плоскостей проекций остается неизменной, а проецируемую фигуру вращают вокруг неподвижной оси, перпендикулярной к одной из плоскостей проекций, до той пары, пока она не займет частное положение, т.е. при вращении плоскость сохраняет свое первоначальное положение, а геометрический образ перемещается в пространстве. Центр вращения — точка пересечения оси вращения с плоскостью вращения. Радиус вращения — расстояние от центра вращения до заданной точки.

Поверхности.

Поверхностью называется совокупность всех последовательных положений некоторой линии, перемещающейся в пространстве по определенному закону. Эту линию называют образующей. Перемещение образующей может быть подчинено какому-нибудь закону или быть случайным. В первом случае поверхность называют закономерной, а во втором — незакономерной. Выделяют три способа образования поверхностей: аналитический (поверхность задается уравнением); каркасный (поверхность задается определенной совокупностью точек и линий); кинематический (поверхность рассматривается как совокупность последовательных положений некоторой линии (образующей), перемещающейся в пространстве по определенному закону. Совокупность геометрических элементов (форма образующей, форма направляющей, закон перемещения образующих) и связей между ними называется определителем поверхности. Определитель поверхности состоит из двух частей: 1) геометрическая часть определителя — совокупность постоянных геометрических элементов и соотношения между ними; 2) алгоритмическая часть определителя — закон, по которому строятся тоски и линии поверхности. В зависимости от формы образующей и закону перемещения поверхности можно приблизительно разделить на группы.

14,15 Линейчатые поверхности — поверхности, образующей которых является прямая линия. Линейчатые поверхности могут быть: развертываемые поверхности, т.е. после разреза их по образующей можно совместить с плоскостью без разрыва и складок; неразвертываемые поверхности, т.е. их нельзя совместить с плоскостью без разрывов и складок.

 



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-14 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: