Исходные данные для расчета оси колесной пары




Масса вагона брутто mбр, кг  
Число осей в вагоне m0, шт  
Высота центра тяжести вагона над уровнем осей колесных пар hц, м 1,85
Расчетная скорость v, м/с 33,3
Масса половины боковой рамы тележки mр, кг  
Масса колесной пары mкп, кг  
Масса колеса mк, кг  
Масса буксы и связанных с ней необрессоренных масс mб, кг  
Масса консольной части оси до круга катания mш, кг  
Масса средней части оси между кругами катания mс, кг  
Масса необрессоренных частей жестко связанных с шейкой оси, включая саму шейку mS = mр + mш + mб, кг  
Удельное давление ветра на боковую поверхность кузова W, Н/м2  
Непогашенное ускорение в кривой jц, м/с2 0,7
Коэффициент трения колеса о рельс при скольжении в поперечном направлении m. 0,25
Коэффициент, учитывающий восприятие сил инерции диском колеса за счет ее упругости b. 0,7
Коэффициент использования грузоподъемности вагона l.  
Статический прогиб рессорного подвешивания вагона fст, м 0,05
Радиус колеса r, м 0,475
Диаметр шейки оси d1, м 0,135
Диаметр подступичной части оси d2 м 0,194
Диаметр средней части оси d3, м 0,165
Расстояние между серединами шеек оси 2b2, м 2,036
Расстояние между кругами катания колес 2s, м 1,58
Расстояние от середины шейки оси до круга катания колес 12, м 0,228
Расстояние от середины шейки оси до задней галтели шейки 13 0,1
Расстояние от середины шейки оси до внутренней кромки заднего роликового подшипника 16, м 0,073
Расстояние от середины оси до равнодействующей сил инерции средней части оси 17, м 0,263

 

 

5.2. Расчет оси колесной пары на выносливость

 

Определение расчетных нагрузок.

Статическая нагрузка на шейку оси с учетом коэффициента использования грузоподъемности вагона

Коэффициент вертикальной динамики

Динамическая нагрузка:

От вертикальных колебаний кузова на рессорах

от центробежных сил в кривых

от силы ветра

Расчетная вертикальная нагрузка:

На левую шейку оси

на правую шейку оси

Ускорение буксового узла:

Левого

Правого

Ускорение левого колеса

Вертикальная сила инерции, действующая:

На левую шейку оси

на правую шейку оси

От левого колеса на рельс (на правом колесе Рнк=0)

Вертикальная сила инерции массы средней части оси

Коэффициент горизонтальной динамики

горизонтальная сила, действующая от колесной пары на рельс, (рамная сила)

Вертикальная реакция рельса, действующая на левое колесо

на правое колесо

Вертикальная реакция действующая

На левую опору оси

на правую опору оси

Поперечная составляющая силы трения правого колеса о рельс

боковая сила

Изгибающий момент от инерционных сил, действующий в сечении

Под левой опорой оси

под правой опорой оси

Изгибающие моменты и напряжения в расчетных сечениях.

От расчетных нагрузок.

где WI,WII,WIII,WIV – моменты сопротивления изгибу расчетных сечений оси.

Для круглого сечения

От статической нагрузки

Коэффициенты перегрузки оси

Максимальные

Минимальные

Для накатанных осей в сечении I-I 150 мН/м2, в сечении II-II 150 мН/м2, в сечении III-III 135 мН/м2, в сечении IV-IV 180 мН/м2.

Результаты расчета оси колесной пары на усталостную прочность приведены в табл. 5.3.

Значение коэффициента запаса усталостной прочности n находим по номограмме в зависимости от максимальных и минимальных значений коэффициента перегрузки оси [1, стр. 115].

Получили следующие значения запаса усталостной прочности:

n1 = 2.5 > [n];

n2 = 1.9 = [n];

n3 = 2.5 > [n];

n4 = 2.2 > [n];

Таким образом, во всех рассматриваемых сечениях оси получено n > [n], следовательно, образование трещин в осях будет наблюдаться не чаще, чем у надежно эксплуатируемых колесных пар, ось имеет повышенную долговечность, то есть срок службы больше или равен принятому сроку службы в расчетах.

Таблица 5.2.

Нагрузки, действующие на ось колесной пары.

Статическая нагрузка Рст, кН 104,53
Коэффициент вертикальной динамики Кд 0,32
Динамическая нагрузка: от вертикальных колебаний кузова от центробежных сил в кривых от давления ветра   Рд, кН Рц, кН Рв, кН   0,0327 0,0664 0,0558
Суммарная вертикальная нагрузка: для левой шейки оси для правой шейки оси   Р1, кН Р2, кН   104,6 104,4
Ускорения буксовых узлов: левого правого   j1, доли j2, доли   3,31 0,209
Масса необрессоренных частей mн, кг  
Ускорение левого колеса Jн, доли 2,89
Вертикальные инерционные нагрузки: для левой шейки оси для правой шейки оси для средней части оси со стороны левого колеса   Рн1, кН Рн2, кН Рнс, кН Рнк, кН   1,194 0,754 0,460 1,159
Коэффициент горизонтальной динамики kг 0,13
Рамная сила Н, кН 2,288
Вертикальная реакция: на левое колесо на правое колесо на левую опору оси на правую опору оси   Ра, кН РЬ, кН Рс, кН Rd, кH   107,05 103,094 105,891 103,159
Сила трения правого колеса о рельс Н2, кН 25,77
Боковая сила Н1, кН 28,05
Изгибающий момент от инерционных сил: под левой опорой оси под правой опорой оси   Мл, кНм Мп, кНм   13,242 12,24

 

Таблица 5.3.

Результаты расчета оси.

Изгибающие моменты, кНм:   МI МII МIII МIV   10,0109 12,8674 39,65103 38,779
от расчетных нагрузок
от статической нагрузки МI МII МIIIIV 7,63069 10,453 23,8328
Моменты сопротивления, м3 WI-WII WIII WIV 0,000241 0,000582 0,000402
Напряжения, МПа:   sI sII sIII sIV   41,539 53,3917 68,1288 96,467
От расчетной нагрузки
от статической нагрузки sI sII sIII sIV 31,662 43,37371 40,949 59,2855
Коэффициенты перегрузки оси:   aI aII aIII aIV   3,111968 3,111968 4,754204 4,77466
Максимальные
Минимальные aI aII aIII aIV 2,602168 1,899583 2,142789 1,825388

 

6. Охрана труда при изготовлении цистерны

 

6.1. Технология изготовление котла цистерны

 

Процесс изготовления котла разделяется на следующие стадии: заготовка листов для цилиндрической части котла и днищ; сборка и сварка листов; вальцовка, сборка и сварка цилиндрической части; изготовление днищ; общая сборка и сварка котла; контрольные испытания.

Сборка и сварка листов цилиндрической части котла производится на стенде (рис.6.1). Заготовленные листы раскладывают на плите стенда, совмещают их стыки, устанавливают и прихватывают к стыкам листов технологические планки для вывода сварного шва и прижимают листы к плите. Одновременно снизу прижимается к сварным листам флюсовая подушка. Продольные швы выполняются автоматическими сварочными головками АБС, смонтированными на устройствах продольного типа.

Сварное полотно при помощи кантователя поворачивают на 1800, после чего его транспортируют на второй стенд для наложения швов с обратной стороны. Этот стенд в отличие от первого не имеет флюсовых подушек. Одновременно со сваркой полотна собирают и сваривают контрольную пластину на тех же режимах и теми же сварочными материалами.

По окончании сварки готовое полотно по рольгангу передают на вальцовку в трех- или четырехваликовых гибочных машинах (вальцах) для придания ему формы цилиндра (обечайки). Затем обечайку мостовым краном транспортируют на специальный стенд для сварки замыкающего стыка цилиндра, который укладывают на опорные ролики 4 (рис. 6.2, а), а замыкающий стык – на балку 5 с магнитными прижимами и флюсовой подушкой, сварка осуществляется сварочным трактором 3 ТС-17М, который перемещается по направляющим внутри обечайки 2. По окончании наложения швов обечайку на опорных роликах поворачивают замыкающим стыком вверх и выполняют сварку с наружной стороны автоматической головкой 1, смонтированной на портальном устройстве. Режимы сварки при наложении наружных и внутренних швов такие же, как при сварке полотна.

Металлургическая промышленность поставляет листовой прокат ограниченной длины, поэтому цилиндрическую часть котла цистерны грузоподъемностью 120т сваривают встык из двух обечаек. С обеих сторон кольцевого шва располагаются шпангоуты для увеличения жесткости котла. Затем в цилиндрической части котла вырезают отверстия под горловину колпака или крышку люка и сливные приборы, срезают технологические планки и зачищают торцы.

Днища котла штампуют на прессе в холодном и горячем состоянии с помощью вытяжных штампов. Применяются вертикальные прессы усилием 30000 – 50000 кН. Этот способ высокопроизводителен, но связан с использованием дорогостоящих прессов и штампов, поэтому может быть рекомендован для крупносерийного или массового производства.

Взрывная штамповка в холодном состоянии в специальных установках с использованием бризантных взрывчатых веществ, с применением штамповочных матриц. Способом взрывной штамповки целесообразно изготовлять днища из материала с высоким пределом прочности и малой пластичностью (нержавеющие хромистые стали, титановые сплавы). Этот способ обеспечивает высокую точность и хорошее качество поверхности изготовленного днища. Затраты на оснастку не большие, так как матрицы можно изготовлять из легких сплавов, железобетона с эпоксидной облицовкой, текстолита и дерева. Изготовление днищ давлением вхолодную выполняется на горизонтальных и вертикальных давильных станках, а обкаткой – на обкатных машинах с применением подвижной матрицы и бортовочных валиков.

Обкатка и обработка давлением значительно проще, чем штамповка на прессе и взрывом. Оборудование легко наладить на различные размеры, но процессы эти малопроизводительны и для осуществления их требуются высококвалифицированные рабочие. Поэтому такие способы можно рекомендовать только для мелкосерийного и серийного производств.

Общую сборку обечайки с днищами выполняют на механизированном стенде (рис.6.3), где обеспечиваются быстрое совмещение и прижатие стыкуемых поверхностей. Оба днища прихватывают к обечайке и затем сваривают внутренние стыковые швы двумя сварочными тракторами 3 (см. рис.6.2, б) одновременно. Флюсовая подушка 6 размещается на непрерывной ленте 7. Наружные швы сваривают автоматическими головками АБС. При сварке котел вращается на опорах стенда. По окончании сварки стыки проверяют, контролируют соответствие размеров сварных швов установленным требованиям.

Качество швов проверяют рентгеновскими или гамма - лучами. Более распространен радиографический контроль.

6.2. Охрана труда при изготовлении

 

6.2.1. Анализ условий труда

Изготовление производится в вагоносборочном цехе вагоностроительного завода. Процесс сборки разделяется на следующие операции:

- правка листового, широкополосного и профильного проката;

- разметка листового и профильного проката;

- обработка кромок;

- гибка заготовок из профильного и листового проката;

- проверка качества сборки и сварки внешним осмотром и замером;

- нанесение ударного клейма техприемщика на стойку рядом с клеймом мастера и сварщика.

К сварному оборудованию, применяемого в данном технологическом процессе относятся:

- сварной полуавтомат А-1230м;

- сварочный выпрямитель ВДГ-301;

- правильно-гибочный пресс;

- гильотинные ножницы и пресс-ножницы;

- фрезерно-отрезные станки;

- листоправильные вальцы;

- гибочно-растяжные прессы;

- профильный инструмент;

- мостовые краны, подвесные цепные конвейеры.

В процессе изготовления цистерны могут возникать следующие опасности и вредности:

- травмирование рабочих при выполнении подъемно-транспортных и других операций;

- поражение электрическим током при работе с электрооборудованием,

- шум и вибрация выше допустимых норм;

- ненормальные метеорологические условия;

- высокий уровень запыленности и загазованности помещения;

- нерациональная организация рабочего места и др.

 

6.2.2. Меры по устранению потенциальных опасностей и вредностей.

 

Наиболее опасным и вредным фактором при изготовлении цистерны является травматизм при выполнении подъемно-транспортных работ, так как он может повлечь за собой частичную или полную потерю работоспособности обслуживающего персонала, а также увечие и смерть.

Для устранения травматизма при выполнении подъемно-транспортных работ грузоподъемные машины проходят периодическое освидетельствование. Особое внимание при этом уделяют состоянию подъемного механизма (барабана), канатов, тросов и цепей.

Стальной канат осматривают не реже одного раза в неделю. Для продления срока службы канатов их регулярно смазывают.

Предусмотрительно ограждение всех вращающихся частей кожухами, а также заземление. Кран оборудован тормозными и предохранительными устройствами, к числу которых относятся автоматические ограничители высоты подъема, веса и перемещения груза. Для обеспечения безопасности при проведении работ по изготовлению цистерны применяется электрический крюковой мостовой кран грузоподъемность 8т, работающий в среднем режиме. Общий вид мостового крана показан на рис. 6.4.

1 – демпфер; 2 – грузовая тележка; 3 – мост крана; 4 – ходовые колеса моста; 5 – кабина; 6 – привод механизма передвижения крана; 7 – концевая балка; 8 – трансмиссионный вал; 9 – барабан; 10 – крюковая подвеска.

Ниже приведены расчеты отдельного узла мостового крана и в частности расчет барабана.

6.2.3. Расчет барабана.

В качестве материала барабана принят чугун СЧ-15-32 ГОСТ 1412-70 с пределом прочности на сжатие sв = 750 МПа. Схема барабана приведена на рис 6.5.

В качестве тягового органа выбираем стальной канат с линейным касанием проволок типа ЛР-Р по ГОСТ 2688-69 с пределом прочности материала этих проволок sв=16 МПа.

Наиболее рабочее натяжение каната определяем по формуле:

где Q – номинальная грузоподъемность, Q=8 т;

in – передаточное число одного полиспаста, in=2;

hn – количество полиспастов.

S = .

В соответствии с правилами Госгертехнадзора выбор каната осуществляет по разрывному усилию:

Sр = S×n;

где n – запас прочности для среднего режима, n = 5.5.

Sр=2020×5,5=11110 кгс.

 

 

Общий вид мостового крана.

Рис 6.4.

 

Схема барабана.

Рис 6.5.

Выбираем канат dк = 15 мм с разрывным усилием Sp = 11700 кгс.

Площадь сечения всех проволок каната f1 = 86,27 мм2 (ГОСТ 2688-69). Минимально допустимый диаметр барабана, измеренный по дну канавки барабана определяет по формуле:

D = (l-1)×dк;

где l – коэффициент, регламентируемый правилами Гсогортехнадзора в зависимости от размера работы, l = 25.

D = (25-1)×15=360 мм.

Примем диаметр барабана, Dб = 400 мм; число витков нарезки на одной половине барабана определяется по формуле:

где Н - высота подъема крюка,

Н = 8 м;

m – кратность полиспаста, m = 3;

r – минимальное количество витков для крепления конца каната накладками.

Длина нарезки на одной половине барабана l=425 мм.

Шаг нарезки tб = 18 мм. Длина гладкой части барабана Sк = 90 мм. Расстояние между правым и левым нарезными полями принимаем равной l1 = 170 мм. Общую длину барабана определяем по формуле:

Zб=2×425+2×90+170=1200 мм.

Длину каната, наматываемого на барабан определяют по формуле:

Zк = Н×in;

Zк = 8×2=16 м.

Необходимая толщина стенки барабана определяется из расчета на сжатие исходя из S = 2020 кгс.

Допускаемые напряжения при сжатии выбираем из условий статической прочности. [sсж] =sв/[n];

[sсж] = 750/5,5=136,4 МПа.

Необходимую толщину стенки барабана определяем по формуле:

d = S/tб[sсж]

d = 2020/1.8×136.4=0.82 мм.

Таким образом, для обеспечения прочности барабана принимаем толщину стенок барабана по 16 мм. Напряжения сжатия sсж < [sсж] = 136,4 МПа в стенке барабана от изгиба и кручения по длине барабана менее трех его диаметров составляет 15% от напряжения сжатия, поэтому им пренебрегаем.

Из приведенных выше расчетов видно, что барабан обладает необходимой прочностью, что повышает надежность работы подъемного механизма мостового крана и снижает степень опасности травматизма при выполнении подъемно-транспортных работ при изготовлении цистерны.

6.2.3. Другие мероприятия.

Для устранения возможности поражения электрическим током при работе с электрооборудованием предусмотрены следующие мероприятия: допуск к работе, производство отключений, вывешивание плакатов и установка ограждений, присоединение к «земле» переносных заземлений, наложение заземлений и др.

Наиболее эффективной мерой борьбы с шумом является звукоизоляция звукопоглощение, замена подшипников скольжения на подшипники качения, максимальная автоматизация технологического процесса изготовления котла цистерны и др. Если же уровень шума выше допустимых норм, то применяют индивидуальные средства защиты: наушники – противошумы, заглушки – антифоны.

Организация труда рабочего места сварщика обеспечивает свободное перемещение вдоль всей зоны работ, позволяет производить подготовительные операции с заготовками и заключительные с деталями при номинальных перемещениях.

Стены и сварочное оборудование запроектировано окрашивать в светло-зеленый цвет с некоторыми оттенками. Например, стены – в более темные тона, чем оборудование.

 

6.2. Меры пожарной безопасности, предусмотренные в сборочном цехе

 

Причинами возникновения пожара могут быть:

- неосторожное обращение с открытым огнем;

- неисправности или неправильное содержание электрической проводки, светильников, электрооборудования;

- неудовлетворительные условия хранения пожароопасных и взрывчатых материалов;

- нарушение противопожарного режима при обращении с различными пожароопасными отходами;

- отступление от противопожарных требований, установленных в технологическом процессе и др.

 

Для предупреждения возникновения пожара горючие и воспламеняющиеся вещества хранятся в металлических ящиках и ограниченном количестве. Бывшие в употреблении обтирочные и другие материалы, пропитанные маслом, керосином, мазутом собирают в металлические ящики и плотно закрывают крышкой.

После окончания работ помещение убирая удаляя при этом все горючие отходы, выключают все действующие приборы и освещение, кроме дежурного. Для предупреждения возникновения пожара из=за неисправности электрической сети и приборов производят их периодический осмотр и ремонт. Регулярно производится инструктаж по обеспечению пожарной безопасности.

Для обнаружения пожара в цехе используется система электрической пожарной сигнализации, состоящая из пожарных извещателей кнопочного типа, приемной станции, сети пожарной сигнализации.

В цехе предусмотрены первичные средство тушения пожара:

- промышленные ручные огнетушители пенные и углекислотные;

- внутренние пожарные краны;

- пожарные щиты.

По нормам противопожарной безопасности для вагоносборочного цеха предусмотрено на каждые 200 м2 один пенный, один углекислый огнетушитель и один ящик с песком емкостью – 0,5 м3 с лопатой, не менее двух выходов для эвакуации людей.

Предусмотрены также эвакуационные выходы – не менее 2-х.

 

7. Экономический эффект от использования разработанной конструкции

 

Новая тормозная рычажная передача представляет собой унифицированную кинематическую систему индивидуального привода на каждую четырехосную тележку от отдельного тормозного цилиндра, установленного на котле вблизи этой тележки.

Она предназначена для перспективных условий эксплуатации восьмиосных вагонов и позволяет:

- существенно уменьшить массу продольных элементов механизма передачи и тем самым практически упразднить усилие, действующее на триангель от воздействия массы элементов, достигающей 700Н при отпущенном состоянии тормоза;

- упростить конструкцию рычажного механизма и увеличить коэффициент полезного действия до 0,92;

- повысить эффективность торможения и эксплуатировать восьмиосные вагоны с тормозными колодками из различных материалов;

- исключить касание колодок о колеса во время тяги и тем самым уменьшить энергетические затраты на движение поезда, а также расход тормозных колодок;

- снизить трудозатраты на содержание и регулировку тормозной рычажной передачи восьмиосных вагонов в эксплуатации.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: