Тема: Измерение линейных величин




Лабораторная работа №1

 

 

Приборы и принадлежности: штангенциркуль, микрометр, измеряемые тела.

Нониус и микрометрический винт. Представимсебе две линейки, сложенные вместе, как указано на рис. 1. Пусть цена деления (длина одного деления) верхней линейки равна l1, а цена деления нижней линейки – l2. Линейки образуют нониус, если существует такое число k, при котором

 

K l2 =(k + 1) l1 (1)

 

У линеек, изображенных на рис. 1, k = 4. Верхний знак в формуле (1) относится к случаю, когда деления нижней линейки длиннее делении верхней, т. е. когда l2 > l1. В противоположном случае следует выбирать нижний знак. Будем для определенности считать, что L2 > L1. Величина

 

δ= l2l1 = l1 /k = l2 /(k + 1) (2)

 

называется точностью нониуса.

рис. 1.

 

В частности, если L1 = 1 мм, k =10 то точность нониуса. δ = 0,1 мм. Как видно из рис. 1, при совпадении нулевых делений нижней и верхней шкал совпадают, кроме того, k- е деление нижней и (k+1)- е деление верхней шкалы, 2k- еделение нижней и 2(k+1)- е деление верхней шкалы и т. д.

Начнем постепенно сдвигать верхнюю линейку вправо. Нулевую деления линеек разойдутся и с начало совпадут первые деления линеек. Это случится при сдвиге l2l1, равном точности нониуса δ. при двойном сдвиге совпадут вторые деления линеек и т. д. если совпали m - е деления, можно, очевидно, утверждать, что их нулевые деления сдвинуты на m δ.

Высказанные утверждения справедливы в том случае, если сдвиг верхней линейки относительно нижней не превышает одного деления нижней линейки. При сдвиге ровно на деление (или несколько делений) нулевое деление верхней шкалы совпадает уже не с нулевым, а с первым (или n- м) делением нижней линейки. При небольшом дополнительном сдвиге с делением нижней линейки совпадает уже не нулевое, в первое деление и т. д. В технических нониусах верхнюю линейку делают обычно короткой, так что совпадать с нижними может лишь одно из делений этой линейки. В дальнейшем мы всегда будем предполагать, что нониусная линейка является в этом смысле короткой.

Применим нониус для измерения длины тела А (рис.2). как видно из рисунка, в нашем случае длина L тела А равна

 

L = nl2 + mδ (3)

 

(l2>l1). Здесь n целое число делений нижней шкалы, лежащих влево от начала верхней линейки, а m - номер деления верхней линейки, совпадающего с одним из делений нижней шкалы (в том случае, если ни одно из делений верхней линейки не совпадает в точности с делениями нижней, в качестве m берут номер деления, которое ближе других подходит к одному из делений нижней шкалы).


рис. 2.

 

Часто подвижная часть нониуса (верхняя линейка на рис. 1) имеет более крупные деления, т. е. l1 > l2. метод определения длины тела в этом случае рекомендуется найти самостоятельно.

Аналогичным образом можно строить не только линейные, но и угловые нониусы. Нониусами снабжаются штангенциркули (рис. 3), теодолиты и многие другие приборы.

При точных измерениях расстояний нередко применяют микрометрические винты – винты с малым и очень точно выдержанным шагом. Такие винты употребляются, например, в микрометрах (рис. 4). Один поворот винта микрометра передвигает его стержень на 0,5 мм. Барабан, связанный со стержнем, разбить на 50 делений. Поворот на одно деление соответствует смещению стержня на 0,01 мм. С этой точностью обычно и производятся измерения с помощью микрометра.

 

рис. 3.

рис. 4.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-10 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: