Несимметричный режим трехфазной цепи




Несимметричный режим в трехфазной системе имеет место, если нарушается хотя бы одно из условий симметрии фазных ЭДС источника —

 

 

и равенства сопротивлений фаз приемника ZA = ZB = ZC.

 


При соединении фаз приемника звездой и наличии нейтрального провода (рис. 1) в общем случае несимметричного режима ток в нейтральном проводе I0 отличен от нуля и существует напряжение между нейтралями приемника и источника U0'0. В связи с этим расчет токов нельзя проводить изолированно по фазам, как в симметричном режиме.

Для расчета рассматриваемой цепи удобнее всего воспользоваться методом узловых напряжений, так как в схеме содержатся всего лишь два узла. Для единственного узлового напряжения имеем уравнение

 

,

 

из которого непосредственно находим напряжение между нейтральными точками:

 

.

 

Для токов в цепи найдем далее и аналогично для и , а . Отсюда следует, что токи во всех трех фазах несимметричной системы взаимозависимы, т. е. изменение сопротивления одной из фаз ведет к изменению тока и в остальных фазах, так как при этом изменяется напряжение U0'0.

Полученная формула относится также и к цепи с изолированной нейтралью, для перехода к которой следует положить лишь Y0 = 0. Фазные токи в этом случае определяют по тем же формулам, что и выше.

Значения тока в несимметричной нагрузке, соединенной треугольником, при заданных фазных ЭДС можно рассчитывать с помощью преобразования треугольника ZAB, ZBC, ZCA в звезду, сопротивления фаз которой выражаются формулами:


 

В результате задача расчета цепи сводится к только что рассмотренной. Такое преобразование позволяет одновременно учесть и сопротивления линейных проводов ZA', ZB', ZC', которые после преобразования оказываются включенными последовательно с фазами образовавшейся звезды ZA, ZB, ZC, изображенной на рис. 10.3 штриховыми линиями.

По этой же общей схеме рассматривают и случай, когда в несимметричной системе заданы линейные ЭДС , и . При этом для схемы соединения звездой с изолированной нейтралью (см. рис. 10.4 при Y0 = 0) в качестве опорного узла 0' для вычисления напряжения фазы С приемника возьмем, например, вывод С генератора. В результате получим непосредственно

 

 

Аналогично, осуществляя круговую перестановку индексов, запишем:

 

 

Токи в фазах получим, умножая фазные напряжения на соответствующие проводимости YA, B, C.

При наличии нескольких несимметричных нагрузок с различным способом соединения фаз следует воспользоваться последовательным преобразованием звезды в треугольник и обратно и эквивалентными преобразованиями параллельно или последовательно соединенных участков.

Топографические диаграммы

 

Наглядное, качественное и количественное представление о величинах и фазовых соотношениях, устанавливающихся в цепи между напряжениями, обеспечивают топографические диаграммы. Каждой точке электрической цепи синусоидального тока соответствует потенциал, который можно изобразить на комплексной плоскости в виде вектора. Потенциал одной из точек, как правило, принимают равным нулю. Совокупность векторов на плоскости, изображающих потенциалы различных точек цепи, когда каждой точке схемы соответствует определенная точка на плоскости векторов, называется топографической диаграммой. На такой диаграмме напряжение между двумя любыми точками цепи определяется разностью двух векторов, изображающих их потенциалы (рис. 2.22). Рис. 2.22. Цепь и ее топографическая диаграмма   Примем потенциал φ5 = 0. Обход будем осуществлять навстречу положительному направлению тока I: U45 = –jXCI; U34 = R2I; U23 = jXLI; U12 = R1I. Вектор напряжения на диаграмме направлен к точке высшего (уменьшаемого) потенциала, а то же напряжение на схеме указывается стрелкой, направленной от высшего потенциала к низшему.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-14 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: