магнитным (наблюдается во всех проводниках) | |
тепловым (наблюдается во всех проводниках, кроме сверхпроводников) | |
химическим (наблюдается в электролитах). |
Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:
наличие в среде свободных электрических зарядов | |
создание в среде электрического поля. |
.Сила тока - I, единица измерения - 1 А (Ампер).
Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.
I = Dq/Dt.(1)
Формула (1) справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.
Для переменного тока:
I = lim Dq/Dt, (*)
Dt - 0
т.е. I = q', где q' - производная от заряда по времени.
Плотность тока - j, единица измерения - 1 А/м2.
Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:
j = I/S.(2)
Электродвижущая сила источника тока - э.д.с. (e), единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:
e = Аст./q.(3)
Потенциал- электростатического поля — скалярная величина, равная отношениюпотенциальной энергии заряда в поле к этому заряду:
- энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.
Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.
В СИ потенциал измеряется в вольтах:
Напряжение — разность значений потенциала в начальной и конечнойточках траектории.
Напряжение численно равно работе электростатического поля при перемещении единичного
положительного заряда вдоль силовых линий этого поля.
Единица разности потенциалов
Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.
2. ОМА ОБОБЩЁННЫЙ ЗАКОН- линейная зависимость для плазмы между плотностью тока j и напряжённостью эфф. электрич. поля Е эфф, включающего объёмные силы неэлектрич. происхождения (т. н. сторонние силы), вызывающие ток. О. о. з. записывается в дифференц. форме.
Для полностью ионизованной двухкомпонентной плазмы, находящейся в магн. поле Н, О. о. з. в стационарном случае имеет вид
где
- соответственно продольная и поперечная проводимости плазмы, те - масса электрона, vei - частота его соударений с коном, Е' = Е - [ иН ] /с - электрич. иоле в собств. системе плазмы, движущейся со скоростью и
с, pi - ионное давление, п - концентрация плазмы, R - термосила, обусловленная градиентом темп-ры плазмы Т:
О. о. з. в форме (1) выполняется при условии, что пространственные масштабы неоднородностей тока существенно превосходят дебаевский и ларморовский радиусы частиц плазмы.
В часто встречающейся ситуации, когда градиенты давления и темп-ры плазмы имеют одинаковое направление, перпендикулярное магн. полю Н, электрич. поле Е' естеств. образом разделяется на три компоненты
и
При этом из (1) выделяются "продольный" и "поперечный" законы Ома:
3. Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону.
Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы. Первую группу составляют элементы, предназначенные для выработки электроэнергии (источники питания). Вторая группа — элементы, преобразующие электроэнергию в другие виды энергии (механическую, тепловую, световую, химическую и т. д.). Эти элементы называются приемниками электрической энергии (электроприемниками). В третью группу входят элементы, предназначенные для передачи электроэнергии от источника питания к электроприемнику (провода, устройства, обеспечивающие уровень и качество напряжения, и др.).
Источники питания цепи постоянного тока — это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. Все источники питания имеют внутреннее сопротивление, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи.
Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы и др. Все электроприемники характеризуются электрическими параметрами, среди которых можно назвать самые основные — напряжение и мощность. Для нормальной работы электроприемника на его зажимах (клеммах) необходимо поддерживать номинальное напряжение. Для приемников постоянного тока оно составляет 27, 110, 220, 440 В, а также 6, 12, 24, 36 В.
4. Действующий ток численно равен такому постоянному току, при котором за один период в проводнике с тем же сопротивлением выделяется такое же количество тепла, как и при переменном:
,
,
где
I - постоянный ток;
i - мгновенный ток;
T - период изменения тока.
Среднеквадратическое значение тока:
.
Среднеквадратическое значение напряжения: .
Из всех форм периодических токов наибольшее распространение получили синусоидальные токи. Синусоидальные токи позволяют наиболее экономично осуществлять производство, передачу, распределение и использование электрической энергии. В линейных электрических синусоидальные токи всегда сохраняют свою фазу.
Синусоидальные токи и напряжения можно изобразить графически, записать при помощи уравнений с тригонометрическими функциями и представить в виде вращающихся векторов на декартовой или комплексной плоскости.
Рисунок 2.3 - Графическое изображение синусоидальных напряжений
Запишем синусоидальные напряжения с помощью тригонометрических функций:
. (2.15)
Значения в скобках синуса называют фазами синусоид, а значения фазы в начальный момент времени - начальной фазой.
Величина ω называется угловой частотой:
, [рад/с] (2.16)
где
Т - период [c];
f - частота [Гц].
При совместном рассмотрении двух синусоидально изменяющихся величин одной частоты разность их фазовых углов, равную разности начальных фаз, называют углом сдвига фаз:
. (2.17)
Если α=0, то говорят, что сигналы синфазны, если α=π, то говорят, что сигналы в противофазе. Если α=+π/2 - в квадратуре. Т.е. е2 отстаёт от е1 на угол α.
5 для установления эквивалентности переменного тока в отношении энергии и мощности, общности методов расчета, а также сокращения вычислительной работы изменяющиеся непрерывно во времени токи. ЭДС и напряжения заменяют эквивалентными неизменными во времени величинами. Действующим или эквивалентным значением называется такой неизменный во времени ток, при котором выделяется в резистивном элементе с активным сопротивлением r за период то же количество энергии, что и при действительном изменяющемся синусоидально токе.