Синтез САУ требуемого качества




 

Синтез системы должен проводиться путем изменения структуры для удовлетворения необходимым требованиям. Характеристики системы, которые соответствуют требованиям, называют желаемыми характеристиками в отличие от располагаемых, которые имеет исходная неоптимальная система.

Основой построения желаемых характеристик служат требуемые показатели системы: устойчивость, быстродействие, точность и др. Так как наибольшее распространение получили логарифмические частотные характеристики, то рассмотрим синтез САУ по желаемым ЛАЧХ и ЛФЧХ.

1. Построение желаемых характеристик начинают со среднечастотного участка, характеризующего устойчивость, быстродействие и форму переходного процесса системы. Положение его определяется частотой среза wс.ж. (рис.1.8.1).

Частота среза определяется по требуемому времени переходного процесса tпп и допустимому перерегулированию s:

. (1.8.1)

Рис.1.8.1. Синтез САУ по желаемым ЛАЧХ

2.Через точку wc проводят среднечастотную асимптоту желаемых характеристики с наклоном 20 дБ/дек (рис.1.8.1.).

3.Находим низкочастотную составляющую с w2.

Обычно задаются добротностью системы по скорости Dск и по ускорению Dуск.

Находим частоту

(1.8.2)

и проводим асимптоту с наклоном - 40 дБ/дек из точки w0 на оси частот.

Пересечение этой асимптоты со среднечастотной ограничивает ее слева на сопрягающей частоте.

4. Сопрягающую частоту w3 выбирают так, чтобы w3/w2=0,75 или lgw3-lgw2=0,7дек, обеспечивающий условия устойчивости.

В этом условии учтены соотношения:

w3=(2-4)wс; , (1.8.3)

которые также можно использовать для ограничения среднечастотной асимптоты.

Если нет ограничений в явном виде, то выбирают w2 и w3 из условий (рис.1.8.1,б)

L2=(6¸16)дб³Lc(wc) ³=-(6¸16)дб. (1.8.4)

Увеличение участка w3 - w2 нецелесообразно.

5. Находим низкочастотную составляющую с w1. По добротности скорости определяем коэффициент усиления

Dск=Kск . (1.8.5)

Откладываем на оси частот Kск, проводим асимптоту с наклоном 20 дБ/дек через эту точку и заканчиваем на пересечении со второй асимптотой. Точка пересечения и является низкочастотной составляющей c w1.

6. Проверяем на запас устойчивости по фазе

g=-p-jwc£-45°, (1.8.6)

т.е. фаза на частоте среза wc не должна превышать -p с гарантией 45°.

7. Проверяем выполнение условий непопадания желательной ЛАЧХ в запретную зону (рис.1.8.1,а).

и LK=20lgKск, (1.8.7)

где Kск= - коэффициент усиления разомкнутой системы или добротность по скорости.

Методика анализа системы

 

1. Статический расчет звеньев системы по типовым характеристикам.

2. Определение передаточной функции и структурной схемы системы с возможным упрощением.

3. Построение частотных характеристик системы.

4. Анализ устойчивости по запасу устойчивости по фазе.

5. Построение кривых переходных процессов.

6. Определение точности и показателей качества.

Коррекция работы САУ

 

Когда устойчивость и необходимое качество переходных процессов САУ не могут быть достигнуты простым изменением параметров (коэффициентов передачи, постоянных времени), тогда эта задача решается введением в систему дополнительных устройств, называемых корректирующими.

Корректирующие устройства (КУ) могут изменить не только параметры системы, но и передаточные функции, обеспечивая, тем самым, целенаправленный синтез структурных схем САУ. КУ представляют собой дополнительные звенья со свойствами настройки на типовые передаточные функции.

По способу включения КУ выделяют 3 вида коррекции САУ: последовательная, встречно-параллельная и согласно-параллельная.

Последовательная коррекция предусматривает включение корректирующего звена Wk(P) последовательно с участком структуры САУ, подлежащим перестройке W0, для получения эквивалентной передаточной функции Wэ(P)

Wэ(P)=W0(P)×Wk(P). (1.8.8)

Для получения коррекции необходимо включить звено с передаточной функцией

. (1.8.9)

Параллельная коррекция может быть встречно-параллельная и согласно-параллельная.

Встречно-параллельная коррекция имеет эффект отрицательной обратной связи

. (1.8.10)

При . (1.8.11)

Согласно-параллельная прямая коррекция дает передаточную функцию

Wэ=W0-Wk. (1.8.12)

при отрицательном знаке корректирующего сигнала.

Моделирование САУ

 

За последнее время для исследования систем автоматического регулирования и, в частности, для построения переходных процессов широко применяются вычислительные машины непрерывного и дискретного действий. Наибольшее применение находят вычислительные машины непрерывного действия, относящиеся к классу моделирующих установок электронного и электромеханического типа.

Удобство моделирующих вычислительных машин заключается в том, что физическому процессу, протекающему в исследуемой системе регулирования, соответствует протекание в вычислительной машине (модели) некоторого другого "аналогового" процесса, описываемого теми же дифференциальными уравнениями, что и исходный процесс. Это позволяет изучать процессы в системах регулирования наиболее наглядно, так как каждой обобщенной координате в исследуемой системе соответствует некоторая переменная в вычислительной машине, например, электрическое напряжение, ток (в электронной модели) или угол поворота (в электромеханической модели).

Моделирующие вычислительные машины применяются и для сопряжения реального регулятора с объектом, в качестве которого выступает модель. Получается замкнутая система регулирования, которая может быть исследована еще до того, как будет построен сам объект.

Вычислительные машины целесообразно использовать для исследования обыкновенных линейных систем в тех случаях, когда последние описываются дифференциальными уравнениями сравнительно высокого порядка и их аналитическое исследование становится малоэффективным.

Однако наибольшее значение имеют вычислительные машины при исследовании линейных систем с переменными параметрами и нелинейных систем, поскольку для этих случаев пока еще мало разработано приемлемых для практики методов, а иногда аналитические методы вообще отсутствуют.

АВМ обычно просты и удобны, но имеют небольшую точность моделирования в пределах нескольких процентов.

Аналоговые вычислительные машины (АВМ) относятся к классу машин непрерывного действия и разделяются на следующие типы:

- электронные;

- электромеханические.

Электронные АВМ имеют наибольшее применение вследствие их сравнительной простоты в изготовлении и эксплуатации. Процессы в исследуемой системе изучаются при помощи наблюдения процессов в некоторой схеме, которая описывается теми же дифференциальными уравнениями, что и исходная.

Существуют две разновидности электронных АВМ: модели структурного вида и модели матричного вида.

Первая позволяет моделировать структурную схему системы управления, что во многих случаях оказывается более удобным и наглядным.

К АВМ структурного вида относятся: ИПТ-5, МПТ-9, МПТ-11, МН-1, МН-2, МН-7, МНМ, ЭМУ-10 и др.

Машины матричного вида (ИПТ-4), ЭЛИ-14 и др.) требуют записи дифференциальных уравнений исследуемой системы в особой, матричной форме. Матричные модели менее удобны для исследования систем управления и используются реже.

Решение задачи моделирования на АВМ структурного вида может быть осуществлено двумя способами:

1) по дифференциальному уравнению, которым описывается исследуемая система;

2) по структурной схеме исследуемой системы.

Пусть дана система регулирования с передаточной функцией и структурой рис. 1.9.1,а.

. (1.9.1)

Дифференциальное уравнение замкнутой системы будет выглядеть следующим образом:

[1+W(P)]y(t)=W(P)x(t). (1.9.2)

Приведем уравнение к полиноминальному виду

(a0P3+a1P2+a2P+a3)y(t)=a3x(t), (1.9.3)

где a0=T1T2, a1=T1+T2, a2=1 и a3=K1K11 .

Перейдем к машинным переменным и запишем дифференциальное уравнение для ввода в машину

(A0P3+A1P2+A2P+A3)Y(t)=B0x(t) (1.9.4)

или . (1.9.5)

Рассмотрим цепочку из трех последовательно включенных интеграторов (рис.1.9.1,б). Если на вход первого интегратора поступает величина P3Y, то на его выходе получится с учетом перемены знака величина P2Y, на выходе второго интегратора - величина РY и на выходе третьего - Y.

В результате можно реализовать дифференциальное уравнение (1.9.5) если на входе первого интегратора сложить с учетом знаков и масштабов все члены, входящие в правую часть формулы.

Принципиальная схема электронной модели приведена на рис.1.9.1,в. Типовые звенья набраны на операционных усилителях, резисторах и конденсаторах.

Рис.1.9.1. Моделирование на АВМ автоматической системы
регулирования:
а - структурная схема САР;
б - структурная схема электронной модели;
в - принципиальная схема электронной модели

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-10-25 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: