Геоинформационные технологии




Введение

 

Геоинформационные системы (ГИС) являются классом информационных систем. Они построены с учетом закономерностей геоинформатики и методов применяемых в этой науке.

ГИС как интегрированные информационные системы предназначены для решения различных задач науки и производства на основе использования пространственно-локализованных данных об объектах и явлениях природы и общества. Неразрывно с ГИС связаны геоинформационные технологии.


Геоинформационные технологии

 

Геоинформационные технологии можно определить как совокупность программно-технологических средств получения новых видов информации об окружающем мире. Геоинформационные технологии предназначены для повышения эффективности: процессов управления, хранения и представления информации, обработки и поддержки принятия решений. По сфере использования ГИС не имеют себе равных. Они применяются в транспорте, навигации, геологии, географии, военном деле, топографии, экономике и т.д. Переход к автоматизированным методам создания карт с помощью ГИС имеет ряд преимуществ:

повышение точности картографической информации;

сокращение трудозатрат на изготовление продукции;

увеличение производительности труда за счет автоматизации от дельных операций или исключения их.

Методологической основой процессов обработки информации в ГИС является цифровое моделирование местности, объединяющее процессы сбора первичной информации, ее моделирования и обновления, обработки и формирования документов.

За счет применения современных технических средств осуществляется автоматизация полевых и камеральных работ.

Использование ГИС происходит на разных уровнях. Это обусловлено многообразием геоинформационных технологий.

Выделяют следующие территориальные уровни использования ГИС в России:

глобальный уровень - Россия на глобальном и евразийском фоне, масштаб 1: 4 500 000 - 1: 100 000 000;

всероссийский уровень - вся территория страны, включая прибрежные акватории и приграничные районы, масштаб 1: 2 500 000-1: 20 000 000;

региональный уровень - крупные природные и экономические регионы, субъекты Федерации, масштаб 1: 500 000 - 1: 4 000 000;

локальный уровень - области, районы, национальные парки, ареал кризисных ситуаций, масштаб 1: 50 000 - 1 000 000;

муниципальный уровень - города, городские районы, пригородные зоны, масштаб 1: 50 000 и крупнее.

К основным компонентам ГИС относят: техническое, программное, информационное обеспечение. Требования к компонентам ГИС определяются, в первую очередь, пользователем, перед которым стоит конкретная задача (учет природных ресурсов, либо управление инфраструктурой города), которая должна быть решена для определенной территории, отличающейся природными условиями и степенью ее освоения.

Техническое обеспечение - это комплекс аппаратных средств, применяемых при функционировании ГИС: рабочая станция или персональный компьютер (ПК), устройства ввода-вывода информации, устройства обработки и хранения данных, средства телекоммуникации.

Рабочая станция или ПК являются ядром любой информационной системы и предназначены для управления работой ГИС и выполнения процессов обработки данных, основанных на вычислительных или логических операциях. Современные ГИС способны оперативно обрабатывать огромные массивы информации и визуализировать результаты.

Ввод данных реализуется с помощью разных технических средств и методов: непосредственно с клавиатуры, с помощью дигитайзера или сканера, через внешние компьютерные системы. Пространственные данные могут быть получены электронными геодезическими приборами, непосредственно с помощью дигитайзера и сканера, либо по результатам обработки снимков на аналитических фотограмметрических приборах или цифровых фотограмметрических станциях.

Устройства для обработки и хранения данных сконцентрированы в системном блоке, включающем в себя центральный процессор, оперативную память, внешние запоминающие устройства и пользовательский интерфейс.

Устройства вывода данных должны обеспечивать наглядное представление результатов, прежде всего на мониторе, а также в виде графических оригиналов, получаемых на принтере или плоттере (графопостроителе), кроме того, обязательна реализация экспорта данных во внешние системы.

Программное обеспечение - совокупность программных средств, реализующих функциональные возможностей ГИС, и программных документов, необходимых при их эксплуатации.

Структурно программное обеспечение ГИС включает базовые и прикладные программные средства.

Базовые программные средства включают: операционные системы (ОС), программные среды, сетевое программное обеспечение и системы управления базами данных. Операционные системы предназначены для управления ресурсами ЭВМ и процессами, использующими эти ресурсы. На настоящее время основные ОС: Windows и Unix.

Любая ГИС работает с данными двух типов данных - пространственными и атрибутивными. Для их ведения программное обеспечение должно включить систему управления базами тех и других данных (СУБД), а также модули управления средствами ввода и вывода данных, систему визуализации данных и модули для выполнения пространственного анализа.

Прикладные программные средства предназначены для решения специализированных задач в конкретной предметной области и реализуются в виде отдельных приложений и утилит.

Информационное обеспечение - совокупность массивов информации, систем кодирования и классификации информации. Информационное обеспечение составляют реализованные решения по видам, объемам, размещению и формам организации информации, включая поиск и оценку источников данных, набор методов ввода данных, проектирование баз данных, их ведение и метасопровождение. Особенность хранения пространственных данных в ГИС - их разделение на слои. Многослойная организация электронной карты, при наличии гибкого механизма управления слоями, позволяет объединить и отобразить гораздо большее количество информации, чем на обычной карте. Данные о пространственном положении (географические данные) и связанные с ними табличные могут подготавливаться самим пользователем либо приобретаться. Для такого обмена данными важна инфраструктура пространственных данных.

Инфраструктура пространственных данных определяется нормативно-правовыми документами, механизмами организации и интеграции пространственных данных, а также их доступность разным пользователям. Инфраструктура пространственных данных включает три необходимых компонента: базовую пространственную информацию, стандартизацию пространственных данных, базы метаданных и механизм обмена данными.

Геоинформационные системы и ГИС-технологии объединяют компьютерную картографию и системы управления базами данных. Концепция технологии ГИС состоит в создании многослойной электронной карты, опорный слой которой описывает географию территории,а каждый из остальных слоев - один из аспектов состояния территории. Тем самым ГИС-технологии определяют специфическую область работы с информацией.

Технология ГИС применима везде, где необходимо учитывать, обрабатывать и демонстрировать территориально распределенную информацию. Пользователями ГИС-технологии могутбыть как организации, чья деятельность целиком базируется на земле владельцы нефтегазовых предприятий, экологические службы, жилищно-коммунальное хозяйство, так и многочисленные коммерческие предприятия - банки, страховые, торговые и строительные фирмы, чья успешная работа во многом зависит от правильного и своевременного учета территориального фактора.

В основе любой ГИС лежит информация о каком-либо участке земной поверхности: континенте, стране, городе, улице.

БД организуется в виде набора слоев информации. Основной шрифт содержит географически привязанную карту местности (топооснова). На него накладываются другие слои, несущие информацию об объектах, находящихся на данной территории: коммуникации, в том числелинии электропередач, нефте- и газопроводы, водопроводы, промышленные объекты, земельные участки, почвы, коммунальное хозяйство, землепользование и др.

В процессе создания и наложения слоев друг на друга между ними устанавливаются необходимые связи, что позволяет выполнять пространственные операции с объектами посредством моделирования и интеллектуальной обработки данных.

Как правило, информация представляется графически в векторном виде, что позволяет уменьшить объем хранимой информации и упростить операции по визуализации. С графической информацией связана текстовая, табличная,расчетная информация, координатная привязка к карте местности, видеоизображения, аудиокомментарии, БД с описанием объектов и их характеристик.

Многие ГИС включают аналитические функции, которые позволяют моделировать процессы, основываясь накартографической информации.

Программное ядро ГИС можно условно разделить на две подсистемы: СУБД и управление графическим выводом изображения. Вкачестве СУБД используют SQL-серверы.

Рассмотрим типовую схему организации ГИС-технологии, в настоящее время сложился основной набор компонентов, составляющих ГИС. К ним относятся:

приобретение и предварительная подготовка данных;

ввод и размещение данных;

управление данными;

манипуляция данными и их анализ;

производство конечного продукта.

Функциональным назначением данных компонентов является:

Приобретение и подготовка исходных данных; включает манипуляции с исходными данными карт - материалами на твердой или бумажной основе, данными дистанционного зондирования, результатами полевых испытаний, текстовыми (табличными) материалами, с архивными данными.

Ввод и размещение пространственной и непространственной составляющих данных включает конвертирование информации во внутренние форматы системы и обеспечение структурной и логической совместимости всего множества порождаемых данных.

Управление данными предполагает наличие средств оптимальной внутренней организации данных, обеспечивающих эффективный доступ к ним.

Функции манипуляции и анализа представлены средствами, предназначенными для содержательной обработки данных в целях обработки и реорганизации данных. С точки зрения пользователя, эти функции являются главными в ГИС-технологиях, потому что позволяют получать новую информацию, необходимую для управления, исследовательских целей, прогнозирования.

Производство конечного продукта включает вывод полученных результатов для конечных потребителей ГИС. Эти продукты могут представлять карты, статистические отчеты, различные графики, стандартные формы определенных документов.

Кроме этого, каждый картографический объект может иметь атрибутивную информацию, в которой содержится информация, которая не обязательно должна отображаться на карте (например, число жильцов какого-либо дома и их социальный статус).

Подавляющее большинство ГИС-систем различают геометрическую и атрибутивную компоненты баз данных ГИС. Их часто называют также пространственными (картографическими, геометрическими) и непространственными (табличными, реляционными) данными.

Картографическая информация представляется точками, кривыми и площадными объектами.

Атрибутивная информация содержит текстовые, числовые, логические данные о картографических объектах. Большинство современных ГИС-инструментариев позволяют хранить информацию в составе БД, как правило, реляционных.

Атрибутивная информация хранится в виде отдельных табличных файлов, как правило, в форматах реляционных баз данных систем DBF, PARADOX, ORACLE, INGRESS. Такой способ характерен как для западных коммерческих продуктов, так и современных отечественных разработок.

Модель файлового сервера является наиболее простой и характеризует не столько способ образования информационной системы, сколько общий способ взаимодействия компьютеров в локальной сети. Один из компьютеров сети выделяется и определяется файловым сервером, т.е. общим хранилищем любых данных. Суть FS - модели иллюстрируется схемой, приведенной на рис.

 

Модель файлового сервера

 

В FS-модели все основные компоненты размещаются на клиентской установке. При обращении к данным ядро СУБД, в свою очередь, обращается с запросами на ввод-вывод данных за сервисом к файловой системе. С помощью функций операционной системы в оперативную память клиентской установки полностью или частично на время сеанса работы копируется файл базы данных. Таким образом, сервер в данном случае выполняет чисто пассивную функцию.

Достоинством данной модели являются ее простота, отсутствие высоких требований к производительности сервера (главное, требуемый объем дискового пространства). Следует также отметить, что программные компоненты СУБД в данном случае не распределены, т.е. никакая часть СУБД на сервере не инсталлируется и не размещается.

Недостатки данной модели - высокий сетевой трафик, достигающий пиковых значений особенно в момент массового вхождения в систему пользователей, например в начале рабочего дня. Однако более существенным недостатком, с точки зрения работы с общей базой данных, является отсутствие специальных механизмов безопасности файла (файлов) базы данных со стороны СУБД. Иначе говоря, разделение данных между пользователями (параллельная работа с одним файлом данных) осуществляется только средствами файловой системы ОС для одновременной работы нескольких прикладных программ с одним файлом.

Несмотря на очевидные недостатки, модель файлового сервера является естественным средством расширения возможностей персональных (настольных) СУБД в направлении поддержки многопользовательского режима и, очевидно, в этом плане еще будет сохранять свое значение

Модель удаленного доступа к данным основана на учете специфики размещения и физического манипулирования данных во внешней памяти для реляционных СУБД. В RDA-модели компонент доступа к данным в СУБД полностью отделен от двух других компонентов (компонента представления и прикладного компонента) и размещается на сервере системы.

Компонент доступа к данным реализуется в виде самостоятельной программной части СУБД, называемой SQL-сервером, и инсталлируется на вычислительной установке сервера системы. Функции SQL-сервера ограничиваются низкоуровневыми операциями по организации, размещению, хранению и манипулированию данными в дисковой памяти сервера. Иначе говоря, SQL-сервер играет роль машины данных. Схема RDA-модели приведена на рис.

 

Рис. Модель удаленного доступа к данным (RDA-модель)

 

В файле (файлах) базы данных, размещаемом на сервере системы, находится также и системный каталог базы данных, в который помещаются в том числе и сведения о зарегистрированных клиентах, их полномочиях и т.п.

На клиентских установках инсталлируются программные части СУБД, реализующие интерфейсные и прикладные функции. Пользователь, входя в клиентскую часть системы, регистрируется через нее на cepвере системы и начинает обработку данных.

Прикладной компонент системы (библиотеки запросов, процедуры обработки данных) полностью размещается и выполняется на клиентской установке. При реализации своих функций прикладной компонент формирует необходимые SQL-инструкции, направляемые SQL-серверу. SQL-сервер, представляющий специальный программный компонент, ориентированный на интерпретацию SQL-инструкций и высокоскоростное выполнение низкоуровневых операций с данными, принимает и координирует SQL-инструкции от различных клиентов, выполняет их, проверяет и обеспечивает выполнение ограничений целостности данных и направляет клиентам результаты обработки SQL-инструкций, представляющие, как известно, наборы (таблицы) данных.

Таким образом, общение клиента с сервером происходит через SQL-инструкции, а с сервера на клиентские установки передаются только результаты обработки, т.е. наборы данных, которые могут быть существенно меньше по объему всей базы данных. В результате резко уменьшается загрузка сети, а сервер приобретает активную центральную функцию. Кроме того, ядро СУБД в виде SQL-сервера обеспечивает также традиционные и важные функции по обеспечению ограничений целостности и безопасности данных при совместной работе нескольких пользователей.

Другим, может быть неявным, достоинством RDA-модели является унификация интерфейса взаимодействия прикладных компонентов информационных систем с общими данными. Такое взаимодействие стандартизовано в рамках языка SQL специальным протоколом ODBC (Open Database Connectivity - открытый доступ к базам данных), играющим важную роль в обеспечении интероперабельности (многопротокольность), т.е. независимости от типа СУБД на клиентских установках в распределенных системах.

Интероперабельность (многопротокольность) СУБД - способность СУБД обслуживать прикладные программы, первоначально ориентированные на разные типы СУБД. Иначе говоря, специальный компонент ядра СУБД на сервере (так называемый драйвер ODBC) способен воспринимать, обрабатывать запросы и направлять результаты их обработки на клиентские установки, функционирующие под управлением реляционных СУБД других, не "родных" типов.

Такая возможность существенно повышает гибкость в создании распределенных информационных систем на базе интеграции уже существующих в какой-либо организации локальных баз данных под управлением настольных или другого типа реляционных СУБД.

К недостаткам RDA-модели можно отнести высокие требования к клиентским вычислительным установкам, так как прикладные программы обработки данных, определяемые спецификой предметной области информационной системы, выполняются на них.

Другим недостатком является все же существенный трафик сети, обусловленный тем, что с сервера базы данных клиентам направляются наборы (таблицы) данных, которые в определенных случаях могут занимать достаточно существенный объем.

Развитием PDA-модели стала модель сервера базы данных. Ее сердцевиной является механизм хранимых процедур. В отличие от PDA-модели, определенные для конкретной предметной области информационной системы события, правила и процедуры, описанные средствами языка SQL, хранятся вместе с данными на сервере системы и на нем же выполняются. Иначе говоря, прикладной компонент полностью размещается и выполняется на сервере системы. Схематично DBS-модель приведена на рис.

 

Рис. Модель сервера базы данных (DBS-модель)

 

На клиентских установках в DBS-модели размещается только интерфейсный компонент (компонент представления), что существенно снижает требования к вычислительной установке клиента. Пользователь через интерфейс системы на клиентской установке направляет на сервер базы данных только лишь вызовы необходимых процедур, запросов и других функций по обработке данных. Все затратные операции по доступу и обработке данных выполняются на сервере и клиенту направляются лишь результаты обработки, а не наборы данных, как в RDA-модели. Этим обеспечивается существенное снижение трафика сети в DBS-модели по сравнению с RDA - моделью.

Следует заметить, что на сервере системы выполняются процедуры прикладных задач одновременно всех пользователей системы. В результате резко возрастают требования к вычислительной установке сервера, причем как к объему дискового пространства и оперативной памяти, так и к быстродействию. Это основной недостаток DBS-модели.

К достоинствам же DBS-модели, помимо разгрузки сети, относится и более активная роль сервера сети, размещение, хранение и выполнение на нем механизма событий, правил и процедур, возможность более адекватно и эффективно "настраивать" распределенную информационную систему на все нюансы предметной области.

Также более надежно обеспечивается согласованность состояния и изменения данных и, вследствие этого, повышается надежность хранения и обработки данных, эффективно координируется коллективная работа пользователей с общими данными.

Чтобы разнести требования к вычислительным ресурсам сервера в отношении быстродействия и памяти по разным вычислительным установкам, используется модель сервера приложений.

Суть AS-модели заключается в переносе прикладного компонента информационной системы на специализированный в отношении повышенных ресурсов по быстродействию дополнительный сервер системы. Схема AS-модели приведена на рис.

 

Рис. Модель сервера приложений (AS-модель).


Как и в DBS-модели, на клиентских установках располагается только интерфейсная часть системы, т.е. компонент представления. Однако вызовы функций обработки данных направляются на сервер приложений, где эти функции совместно выполняются для всех пользователей системы. За выполнением низкоуровневых операций по доступу и изменению данных сервер приложений, как в RDA-модели, обращается к SQL-серверу, направляя ему вызовы SQL-процедур, и получая, соответственно, от него наборы данных.

Как известно, последовательная совокупность операций над данными (SQL-инструкций), имеющая отдельное смысловое значение, называется транзакцией.

В этом отношении сервер приложений управляет формированием транзакций, которые выполняет SQL-сервер. Поэтому программный компонент СУБД, инсталлируемый на сервере приложений, еще называют монитором обработки транзакций (Transaction Processing Monitors - TRM), или просто монитором транзакций.

AS-модель, сохраняя сильные стороны DBS-модели, позволяет оптимально построить вычислительную схему информационной системы, однако, как и в случае RDA-модели, повышает трафик сети.

В практических случаях используются смешанные модели, когда простейшие прикладные функции и обеспечение ограничений целостности данных поддерживаются хранимыми на сервере процедурами (DBS-модель), а более сложные функции предметной области (так называемые правила бизнеса) реализуются прикладными программами на клиентских установках (RDA-модель) или на сервере приложений (AS-модель).



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: