Кузов. Классификация повреждений. Конструкция кузова легкового автомобиля




Введение

 

Ремонт отечественных и зарубежных автомобилей - прибыльный вид деятельности. С каждым днем растет количество автомобилей и предприятий, которые занимаются их ремонтом. И если ремонт агрегатов и систем, техническое обслуживание автомобиля многие автолюбители производят самостоятельно, то кузовным ремонтом под силу заняться далеко не каждому. Кроме специфического оборудования, позволяющего восстановить первоначальную форму деталей и цвет автомобиля, требуется опыт работы, знание современных материалов и особенностей их использования. Это особенно важно, если автомобиль новый и дорогой, поэтому и цены на кузовные работы достаточно высоки.

При всех достоинствах современных автомобилей, они уже через несколько лет эксплуатации теряют первоначальный вид, не говоря уже о более заметных повреждениях кузова в результате аварии. Но то, что является бедой для автомобилиста, для работника мастерской, станции техобслуживания - источник дохода. И автолюбитель готов идти на траты, чтобы автомобиль был не только средством передвижения, но и радовал глаз, служил долгие годы. Это возможно только в том случае, если кузовные работы выполнены качественно, мастер знает свое дело. Стоит ли удивляться тому, что на рынке труда всегда востребованы специалисты по ремонту автомобилей? Для человека, который хочет обеспечить себя стабильным заработком, эта сфера деятельности подходит как никакая другая, ведь автомобилей с каждым днем становится все больше, а увеличение парка дорогих и престижных машин позволяет устанавливать достаточно высокие расценки на кузовные работы, ведь ремонт такой автомашины - это еще и огромная ответственность, высокий уровень качества выполненных работ.


Часть I. Кузовной ремонт

 

Кузов. Классификация повреждений. Конструкция кузова легкового автомобиля

 

Назначение кузова современного легкового автомобиля определяется двумя функциями: кузов обеспечивает пассажирам и водителю комфорт и безопасность в аварийных ситуациях.

По назначению и исполнению кузова легковых автомобилей подразделяют на следующие 5 классов:

" седан " - двух- или четырехдверный, 4-5-местный, с отдельными отсеками для двигателя, пассажиров и багажа;

" универсал " - автомобиль с вагонной формой кузова, используется для перевозки людей и грузов;

" кабриолет " - 4-6-местный автомобиль со складной крышей и съемными стенками боковых окон;

" лимузин " - автомобиль высокого уровня комфортабельности, водитель отделен от пассажиров стеклянной перегородкой;

" купе " - двухместный автомобиль с двумя дополнительными местами на заднем сидении.

Кузова большинства легковых автомобилей являются несущим элементом конструкции, к ним крепятся элементы ходовой части и шасси. Это уменьшает массу автомобиля, снижает его общую высоту, а значит, и центр тяжести, делая автомобиль более устойчивым. С другой стороны, эта несущая конструкция создает трудности для шумоизоляции салона. Комфортабельные автомобили высокого класса имеют рамную конструкцию.

Основа кузова - каркас. Требования к нему следующие. Конструкцию каркаса рассчитывают так, чтобы при ударе с любой стороны энергия удара гасилась. Детали кузова, образующие салон, должны получить при этом минимально возможные деформации, другими словами, кузов должен устранить или снизить тяжесть последствий аварии.

Для поглощения энергии удара при столкновении служат бамперы. Для обеспечения безопасности внутри салона - мягкая панель приборов, накладки стоек, конструкция других элементов. Определенную роль в обеспечении безопасности играют также ремни безопасности.

Для примера охарактеризуем конструкцию кузова автомобиля ВАЗ-2108. Каркас кузова включает следующие элементы: передок, пол, боковины, крышу с рамой ветрового окна, панель задка и силовые элементы - лонжероны, поперечины, стойки. Детали оперения: лицевые панели кузова и навесные узлы - капот, дверь задка, передние крылья. Все детали и узлы, кроме навесных элементов и передних крыльев, соединены контактной точечной сваркой, а значительно нагруженные детали каркаса дополнительно приварены электродуговой сваркой.

Передок состоит из вертикального щитка, брызговиков, поперечин, коробки воздухопритока, усилителей и других мелких деталей. Брызговики соединены с передними лонжеронами.

Пол автомобиля включает передний, средний и задний полы. В переднем, имеющем корытообразную форму, находится тоннель для размещения выпускных труб, топливных и тормозных трубопроводов. Тоннель служит для предохранения этих деталей от повреждений и увеличения жесткости пола. Задний пол имеет нишу для запасного колеса. Вдоль полов приварены лонжероны. К полу приварены также передняя, средняя и задняя поперечины.

Боковины кузова состоят из наружных и внутренних панелей. Наружные являются цельными с центральными и задними стойками и с проемами боковых окон. Внутренние панели кузова конструктивно объединяют в себе наружные арки задних колес и усилители стоек. За усилителем у правой боковины есть ниша для установки улавливателя паров бензина, желобки и фланцы под уплотнители дверей и стекол.

Съемные узлы - это передние двери, дверь задка, капот, передние крылья, бамперы, облицовка радиатора и др. Крылья прикреплены к каркасу самонарезающими болтами; под крыльями для уменьшения вибрации установлены прокладки. Петли передних дверей и капота допускают регулировку их положения.

Для повышения жесткости и прочности кузова применяют усиливающие накладки, кронштейны, ребра жесткости.

Для защиты от механических повреждений, создания термо- и шумоизоляции нижняя наружная часть кузова, брызговики колес и внутренние поверхности крыльев покрыты антикоррозионным материалом, а пол салона и багажника - специальными вибродемпфирующими мастиками. Перед сваркой коррозионно-опасных мест свариваемые детали покрывают специальным консервирующим составом. Внешние и внутренние поверхности кузова обрабатывают специальными составами, в результате чего на них образуются не растворимые в воде защитные соединения. Снаружи кузов окрашивают синтетическими эмалями.

Стеклоподъемники отечественных автомобилей двух типов - рычажные и тросовые. Тросовый привод стеклоподъемника крепят на внутренней панели двери гайками к приварным болтам.

Трос охватывает два ролика на верхнем и нижнем кронштейнах направляющей стеклоподъемника. В механизме привода стеклоподъемника трос наматывается на барабан, на его ведущем валике есть пружинный тормоз, который препятствует самопроизвольному опусканию стекла.

Элементы кузова, повышающие безопасность

Наиболее вероятная скорость автомобилей при соударениях составляет 80 км/ч при лобовых и задних ударах и 64 км/ч при боковых ударах. Эти цифры являются исходными для расчета прочности кузовов и разработки конструктивных мер, обеспечивающих безопасность легковых автомобилей.

Повышение безопасности автомобилей включает в себя меры "активной" безопасности, которые способствуют предотвращению возникновения аварий, и меры "пассивной" безопасности, которые закладываются в конструкцию автомобиля для обеспечения безопасности водителя и пассажиров, если аварию предотвратить не удастся.

Меры "активной" безопасности автомобиля предусматривают разработку конструкций деталей и узлов, обеспечивающих эффективность торможения и надежность работы тормозного привода, противоблокировочных систем, позволяющих автомобилю двигаться в заданном направлении при торможении, а также меры по увеличению обзора дороги и окружающей обстановки с места водителя. Сюда относят установку двухрежимного стеклоочистителя, отопителя, вентилятора, которые не допускают обледенения и запотевания стекол.

Меры "пассивной" безопасности предусматривают предотвращение или уменьшение травматизма водителя и пассажиров при аварии. Результат достигается обеспечением защитной зоны вокруг каждого пассажира, ограничением возможности перемещения водителя и пассажиров относительно сиденья, уменьшением уровня травматизма от ударов о внутренние поверхности салона, обеспечением возможности выхода водителя и пассажиров из потерпевшего аварию автомобиля.

Обеспечение защитных свойств кузова заключается в разработке и внедрении таких конструктивных решений, которые позволяют образовать вокруг водителя и пассажиров защитную зону.

Жесткий салон в сочетании с энергопоглощающими передней и задней частями кузова позволяет снизить ускорения людей в момент соударения и в наилучшей степени обеспечивает защитную зону вокруг пассажиров. Кузова такой конструкции строят по принципу прогрессивной энергоемкости, т.е. с заданной степенью усиления одних деталей при максимально допустимом смятии других в целях поглощения энергии удара.

Очень большие нагрузки при ударах в разных направлениях (продольном, поперечном и вертикальном) действуют на двери, петли дверей и дверные замки. Двери защищают салон от проникновения внутрь посторонних предметов при аварии и не должны открываться во время соударения, чтобы пассажиры не могли выпасть из кузова. Дверные замки оборудуются надежной системой блокировки, предотвращающей случайное их отпирание под действием инерционных нагрузок или при ударе в момент аварии, так как и сами двери не исключаются из общего контура жесткости салона кузова.

Для защиты водителя и пассажиров при боковых столкновениях в двери кузова встроены защитные брусья коробчатого сечения. Брус размещен внутри двери между опускным стеклом и наружной панелью. Кроме защиты салона от проникновения ударяющего автомобиля, брусья как бы сдвигают ударенный автомобиль в сторону.

Бамперы в современных легковых автомобилях обладают защитными свойствами в сочетании с декоративными особенностями, созданными дизайнерами. Сегодня устанавливают бамперы широкого профиля с наиболее закругленными формами. Их защитные свойства высоки, бамперы предохраняют автомобиль от повреждений при легких столкновениях и должны соответствовать международным нормам безопасности.

Системы, ограничивающие перемещение водителя и пассажиров внутри кузова, включают в себя сиденья и ремни безопасности.

Уровень травматизма при авариях снижается наиболее эффективно, если в конструкции автомобиля предусмотрено надежное крепление пассажира к сиденью, которое, в свою очередь, не должно отрываться от пола кузова под действием аварийных перегрузок. Сиденья закрепляют так, чтобы они выдерживали требования безопасности по продольным нагрузкам, действующим в обоих направлениях, а также по крутящему моменту.

Ремни безопасности имеют простое замковое устройство, обеспечивающее надежное крепление, а при необходимости позволяющее быстро отстегнуться. В рабочем положении ремни обеспечивают достаточную свободу перемещений водителя и не мешают управлению автомобилем.

Расчеты и практика показывают, что ремни безопасности надежно защищают пассажиров при фронтальном соударении со скоростью до 80 км/ч.

Следующий элемент - руль. Безопасность руля заключается в исключении случаев тяжелого травмирования водителей при фронтальных столкновениях автомобилей. В соответствии с требованиями во время испытания автомобиля на столкновение с железобетонным барьером массой не менее 70 т при скорости 48,3 км/ч верхняя часть рулевой колонки и рулевого вала не должны перемещаться в заднем направлении горизонтально и параллельно продольной оси транспортного средства более чем на 12,7 см. Если рулевая колонка сталкивается с моделью туловища, которая ударяется об эту колонку с относительной скоростью не менее 24,1 км/ч, то сила, с которой рулевая колонка воздействует на переднюю часть модели туловища, не должна превышать 11,35 кН (1135 кгс).

Ветровые стекла автомобилей должны соответствовать требованиям правил ЕЭУ ООН. Например, стекла автомобилей ВАЗ трехслойные, они состоят из двух профилированных полированных стекол с прослойкой из липкого прозрачного пластика. Основное преимущество слоистого ветрового стекла заключается в том, что трещины при ударе распространяются из центра удара, осколки удерживаются на пластмассовой прослойке, стекло сохраняет свою прозрачность, форму и не выпадает из проема кузова.

Заднее и боковые стекла изготовляют из закаленного стекла, они проходят специальную термообработку, обеспечивающую повышенную прочность. При разрушении эти стекла распадаются на множество мелких осколков без острых углов и граней, способных вызвать глубокие ранения.

Подголовники должны исключить тяжелые травмы, выражающиеся в повреждении шейных позвонков и позвонков верхних отделов грудной клетки. Такие травмы наносятся при ударе движущегося автомобиля в заднюю часть стоящего автомобиля. При таком виде дорожно-транспортного происшествия подголовники по прочности должны соответствовать международным правилам ЕЭК ООН, а их конструкция исключать возможность травмирования заднего пассажира при фронтальном столкновении автомобилей.

Важное значение имеет интерьер кузова. Он включает в себя внутреннюю отделку салона, которая должна отвечать современным эстетическим и эргономическим требованиям.

Панель приборов изготовляют без выступающих деталей и острых кромок, с удобным размещением контрольно-измерительных приборов и органов управления. Энергоемкость панели обеспечивается не только мягкой обивкой, но и введением в конструкцию каркаса стальных тонколистовых панелей, способных при ударе поглощать энергию за счет их частичной деформации.

Подлокотники, двери и противосолнечные козырьки облицовывают мягкими материалами. Ручки дверей, стеклоподъемников, кнопки переключателей и блокировки замков дверей размещают и изготовляют так, чтобы в случае удара пассажир не мог получить травмы.

Повреждения автомобиля при авариях

Наибольшее количество соударений автомобилей приходится на переднюю часть, несколько меньше - на заднюю и наименьшее - на боковые.

Повреждения кузовов, полученные в результате соударения, делят на три категории. К первой относят очень сильные повреждения, в результате которых необходима замена кузова. Ко второй категории относятся повреждения средней тяжести, при которых большая часть деталей требует замены или сложного ремонта. К третьей относятся менее значительные повреждения - пробоины, разрывы на лицевых панелях, вмятины и царапины, полученные при ударе во время движения с малой скоростью. Эти повреждения не представляют опасности для пассажиров и водителя при эксплуатации автомобиля, хотя его внешний вид не отвечает эстетическим требованиям.

Наиболее разрушительные повреждения кузова наблюдаются при фронтальных столкновениях - соударениях, нанесенных автомобилю непосредственно в переднюю часть кузова или под углом не более 40-45° в районе передних стоек. Такие столкновения происходят, как правило, между двумя движущимися навстречу транспортными средствами, скорости которых складываются, что и создает высокие ударные нагрузки. Количество энергии, которое должно поглотиться при таких соударениях, огромно: около 80 100 кДж для автомобиля массой около одной тонны. Эта энергия поглощается при деформации автомобиля за время менее 0,1 с. Кузов автомобиля разрушается, особенно его передняя часть, а действующие при этом большие нагрузки в продольном, поперечном и вертикальном направлениях передаются всем смежным деталям каркаса кузова и особенно его силовым элементам. Рассмотрим сказанное на примерах.

Итак, фронтальное соударение автомобиля произошло передней частью кузова в районе левого переднего крыла, лонжерона и левой фары. Разрушительные повреждения получают панель передка, крылья, капот, брызговики, передние лонжероны, рама ветрового окна и крыша. Эта деформация устанавливается визуально. Невидимая деформация происходит в передних, центральных и задних стойках с обеих сторон, в левых передней и задней дверях, в левом заднем крыле и даже в задней панели багажника.

Или: соударение произошло передней частью кузова автомобиля под углом 40-45°. Разрушительные повреждения получили передние крылья, капот, панель передка, брызговики, передние лонжероны. Восстановить базовые точки передней части кузова без замены деформированных деталей новыми практически невозможно. При этом необходимо восстановление размеров по проемам передних дверей и положению передних и центральных стоек, так как силовые нагрузки передавались через передние двери на передние и центральные стойки кузова, создавая сжимающие усилия на порог и верхнюю часть боковины кузова.

Еще пример: удар нанесен сбоку в переднюю часть кузова автомобиля в районе сопряжения передней панели с передними частями лонжерона и левого крыла. Разрушительные повреждения получают оба передних крыла, панель передка, брызговики, лонжероны, капот. Растягивающие усилия нарушают проем левой передней двери, сжимающие усилия вызывают деформацию в проеме правой двери и в боковине левой передней двери. Передние и центральные стойки также получают значительные силовые перегрузки и отклоняются от своего первоначального положения.

Удар получен сбоку в переднюю стойку кузова автомобиля с левой стороны. При этом значительно деформированы левая передняя стойка, рама ветрового окна, крыша, пол и лонжероны переднего пола, панель передка, капот, крылья, брызговики и передние лонжероны. Передок кузова автомобиля сдвинулся влево, порог и верхняя часть правой боковины восприняли растягивающие нагрузки, а центральные и задние стойки - сжимающие нагрузки; правый брызговик в сопряжении с передней стойкой испытывал разрывающие усилия.

При внешнем осмотре аварийного кузова можно установить наличие перекосов по выдвижению или западанию дверей, крышки багажника и капота относительно неподвижных поверхностей кузовных деталей. Нарушение равномерности зазоров по линиям сопряжения навесных и неподвижных деталей также свидетельствует о наличии деформаций в деталях каркаса кузова, вызванных аварией. При этом следует помнить, что внешним осмотром нельзя определить отклонения линейных размеров проемов кузова и геометрических параметров по базовым точкам основания кузова. Для этих целей необходимо применять измерительные средства, специальные контрольные приспособления и стенды, описания которых даны в соответствующих главах книги.

 

1.2 Технические требования к кузову ваз по качеству сварочных, правочных и рихтовочных работ

 

 

ВАЗ перед окраской должны соответствовать следующим техническим требованиям:
ремонтные панели, детали и узлы кузова должны быть приварены по контуру прилегания (согласно ремонтной технологической документации) без деформации и перекосов;
изношенные или разрушенные края отверстий под болтовые соединения деталей кузова должны быть восстановлены;
наличие трещин, разрывов и пробоин на кузове не допускается; повреждения, вызванные коррозией, а также разрывы и пробоины можно устранить, используя ремонтные детали и вставки с последующей их приваркой согласно технологической инструкции; сварные швы на лицевых поверхностях кузова надо зачищать заподлицо с основным металлом;
на лицевых поверхностях кузова не должно быть глубоких вмятин, выступов, царапин, следов некачественной правки (наибольшие глубина вмятин или царапин, высота выступов — 0,5 мм, допускаются риски, оставленные после зачистки абразивными материалами);
в труднодоступных местах, а также на лицевых поверхностях ненесущих элементов можно выравнивать поверхности припоем или специальными составами шпаклевок, а затем зачищать эти места заподлицо с основным металлом;
двери кузова, крышка багажника и капот должны быть подогнаны по посадочным местам, не иметь перекосов, надежно и легко закрываться и открываться;
двери, крышка багажника и капот могут выступать относительно лицевых неподвижных поверхностей не более чем на 3 мм; штамповки дверей и крыльев на одной стороне могут не совпадать также не более чем на 3 мм;
геометрические параметры основания кузова при правке поврежденных кузовов должны быть восстановлены с использованием технологических приспособлений и стендов типа БС-123.000, БС-160.000, БС-188.000, БС-08.300, поперечины 2101(2121)— 29040200 и других аналогичных технических средств отечественного или зарубежного производства.
Проверять наличие отклонений в кузове по перекосу и (или) смещению осей передней и задней подвесок (мостов) необходимо на всех автомобилях после ремонта кузова, эамеряя диагональные и межосевые продольные размеры между симметричными точками передней и задней подвесок. Разность диагональных и продольных размеров должна быть не более 0,4% от замеренных величин Также после ремонта кузова надо по технологическим инструкциям 3100.25100.13011, 13012, 13021, 13024 на всех автомобилях проверять и регулировать углы установки управляемых колес.Схождение, развал и наклон оси передних колес должны отвечать требованиям ТУ 37.101.0167—87:линейные размеры проемов капота, багажника и дверей должны соответствовать данным при замене панелей и деталей кузова, а также при нарушении антикоррозионной защиты при проведении ремонтных работ (сварке, пайке и др.) надо устранить коррозию, провести антикоррозионную обработку и нанести противошумное покрытие; на поверхностях кузова, подлежащих окраске, не должно быть грунтов и шпатлевок,

Глава 2. Производственный процесс

2.1. Производство стали


1. Сущность процесса


Сталь отличается от чугуна меньшим содержанием углерода, кремния, марганца, примесей серы и фосфора. Исходные материалы для получения стали - передельный чугун и стальной лом (скрап). Следовательно, сущностью передела чугуна в сталь является уменьшение содержания углерода и других элементов и перевода их в шлак или газы.
В настоящее время сталь получают в кислородных конвертерах, мартеновских и электрических печах.
Производство стали в кислородных конвертерах
Кислородно-конвертерный процесс заключается в продувке жидкого чугуна кислородом.

 

1.1 Кислородный конвертер представляет собой сосуд 1 грушевидной формы из стального листа, футерованный внутри основным кирпичом 2. Рабочее положение конвертера вертикальное. Кислород подается в него под давлением 0,8...1 МПа с помощью водоохлаждаемой фурмы 3, вводимой в конвертер через горловину 4 и располагаемой над уровнем жидкого металла на расстоянии 0,3...0,8 м.
Конвертеры изготовляют емкостью 100...350 т жидкого чугуна. Общий расход технического кислорода на получение 1 т стали, составляет 50...60 м3.
Материалами для получения стали в кислородном конвертере служат жидкий передельный чугун и стальной лом. Для наводки шлака в конвертер добавляют железную руду и известь, а для его разжижения - боксит и плавиковый шпат.
Перед началом работы конвертер поворачивают на цапфах 5 вокруг горизонтальной оси и с помощью завалочной машины загружают до 30 % металлолома, затем заливают жидкий чугун при температуре 1250...1400 °С, возвращают конвертер в исходное вертикальное положение, вводят кислородную фурму, подают кислород и добавляют шлакообразующие материалы.
Изменение металла по ходу плавки показано на рис. 2. При продувке происходит окисление углерода и других примесей как непосредственно кислородом дутья, так и оксидом железа FeO. Одновременно образуется активный шлак с необходимым содержанием СаО, благодаря чему происходит удаление серы и фосфора с образованием устойчивых соединений P2O5- ЗСаО и CaS в шлаке.
В момент, когда содержание углерода достигает заданного для выплавляемой марки стали, подачу кислорода прекращают, конвертер поворачивают и выливают

вначале сталь, а затем - шлак.

 

 

Для уменьшения содержания кислорода сталь при выпуске из конвертера раскисляют, т. е. вводят в нее элементы с большим, чем у железа, сродством к. кислороду (Si, Mn, A1). Взаимодействуя с оксидом железа FeO, они образуют нерастворимые оксиды МпО, SiO2, А1203, переходящие в шлак.
Производительность кислородного конвертера емкостью 300 т достигает 400...500 т/ч, в то время как производительность мартеновских и электропечей не превышает 80 т/ч. Благодаря высокой производительности и малой металлоемкости кислородно-конвертерный способ становится основным способом производства стали.

 

2. Производство стали в мартеновских печах
2.1 Мартеновская печь представляет собой регенеративную пламенную печь, высокая температура в которой (1750... 1800 °С) достигается за счет сгорания газа в плавильном пространстве. Газ и воздух подогреваются в регенераторах. Слева от плавильного пространства 7 находятся каналы для газа 3 и воздуха 4, соединенные с регенераторами 1 и 2. Такие же каналы для газа 9 и воздуха 8 имеются справа от плавильного пространства 7; они соответственно соединены с регенераторами 10 и 11. Каждый из регенераторов имеет насадку из выложенного в клетку огнеупорного кирпича. Шихта загружается через окна 5.
Подаваемые в печь газ и воздух проходят через предварительно нагретые до температуры 1200... 1250 °С регенераторы 10 и 11, нагреваются в них и поступают в плавильное пространство печи. Здесь газ и воздух смешиваются и сгорают, образуя пламя высокой температуры. Мартеновские печи, работающие на мазуте, имеют с каждой стороны по одному регенератору для нагрева только воздуха.
В нашей стране эксплуатируются мартеновские печи емкостью от 20 до 900 т жидкой стали. Важной характеристикой этих печей является также площадь пода 6. Для печи емкостью 900 т она составляет около 120 м2.

 

3. Мартеновский процесс. Материалами для выплавки стали в мартеновской печи могут быть: стальной лом (скрап), жидкий я твердый чугуны, железная руда. В зависимости от их соотношения в шихте различают:
1) скрап-рудный процесс на шихте из жидкого чугуна с добавкой 25...39 % стального скрапа и железной руды;
2) скрап-процесс на шихте из стального лома и 25...45 % чушкового передельного чугуна.
Флюсом в обоих процессах обычно служит известняк СаСО3 (8...12 % от массы металла).
Более широкое применение в металлургии получил скрап-рудный процесс выплавки стали в основной мартеновской печи. Вначале в печь загружают и прогревают железную руду и известняк, затем добавляют стальной скрап и заливают жидкий чугун. В процессе плавки примеси в чугуне окисляются за счет оксида железа руды и скрапа:


3Si + 2Fе2Оз== 3SiO2+ 4Fe; ЗМп + Fe20з== ЗМпО + 2Fe;
6Р + 5Fе2Оз= ЗРзО5+ lOFe; ЗС + Ре20з= ЗСО + 2Fe.
Сера удаляется в результате взаимодействия сернистого железа с известью:
FeS + СаО == FeO + CaS.
Оксиды SiO2, MnO, P2O5, CaO, а также сульфид CaS образуют шлак, периодически выпускаемый из печи в шлаковые чаши.
Для интенсификации процесса плавления и окисления примесей ванну продувают кислородом, подаваемым через водоохлаждаемые фурмы. Продувка кислородом позволяет в 2...3 раза сократить длительность процесса, уменьшить расход топлива и железной руды.После плавления шихты начинается период кипения ванны. В это время интенсивно окисляется углерод в металле. В момент, когда содержание его достигает заданного, а количество серы и фосфора уменьшается до минимума, кипение прекращают и начинают раскисление стали в ванне печи ферромарганцем, ферросилицием и алюминием. Окончательно сталь раскисляют алюминием и ферросилицием в сталеразливочном ковше при выпуске стали из печи.
Скрап-процесс применяют на машиностроительных заводах, не располагающих жидким чугуном. От скрап-рудного процесса он несколько отличается завалкой и плавлением шихты.
Основной скрап-процесс применяется для выплавки углеродистых и легированных сталей.
Показатели работы мартеновских печей: съем стали с 1 м2 пода печи в сутки и расход топлива на тонну выплавленной стали. На отечественных заводах съем стали составляет около 10 т/м2 в сутки, а расход топлива при скрап-рудном процессе- 120... 180 и при скрап-процессе - 170... 250 кг/т.
Интенсификация мартеновского производства достигается использованием печей большей емкости, хорошей подготовки шихтовых материалов, автоматизации процесса плавки. Повышению производительности печей и экономии топлива способствует применение кислородного дутья. я твердый чугуны, железная руда. В зависимости от их соотношения в шихте различают:
1) скрап-рудный процесс на шихте из жидкого чугуна с добавкой 25...39 % стального скрапа и железной руды;
2) скрап-процесс на шихте из стального лома и 25...45 % чушкового передельного чугуна.
Флюсом в обоих процессах обычно служит известняк СаСО3 (8...12 % от массы металла).
Более широкое применение в металлургии получил скрап-рудный процесс выплавки стали в основной мартеновской печи. Вначале в печь загружают и прогревают железную руду и известняк, затем добавляют стальной скрап и заливают жидкий чугун. В процессе плавки примеси в чугуне окисляются за счет оксида железа руды и скрапа:
3Si + 2Fе2Оз== 3SiO2+ 4Fe; ЗМп + Fе20з== ЗМпО + 2Fe;
6Р + 5Fе2Оз= ЗРзО5+ lOFe; ЗС + Fе20з= ЗСО + 2Fe.
Сера удаляется в результате взаимодействия сернистого железа с известью:
FeS + СаО == FeO + CaS. Оксиды SiO2, MnO, P2O5, CaO, а также сульфид CaS образуют шлак, периодически выпускаемый из печи в шлаковые чаши.
Для интенсификации процесса плавления и окисления примесей ванну продувают кислородом, подаваемым через водоохлаждаемые фурмы. Продувка кислородом позволяет в 2...3 раза сократить длительность процесса, уменьшить расход топлива и железной руды.
После плавления шихты начинается период кипения ванны. В это время интенсивно окисляется углерод в металле. В момент, когда содержание его достигает заданного, а количество серы и фосфора уменьшается до минимума, кипение прекращают и начинают раскисление стали в ванне печи ферромарганцем, ферросилицием и алюминием. Окончательно сталь раскисляют алюминием и ферросилицием в сталеразливочном ковше при выпуске стали из печи.
Скрап-процесс применяют на машиностроительных заводах, не располагающих жидким чугуном. От скрап-рудного процесса он несколько отличается завалкой и плавлением шихты.
Основной скрап-процесс применяется для выплавки углеродистых и легированных сталей.
Показатели работы мартеновских печей: съем стали с 1 м2 пода печи в сутки и расход топлива на тонну выплавленной стали. На отечественных заводах съем стали составляет около 10 т/м2 в сутки, а расход топлива при скрап-рудном процессе- 120... 180 и при скрап-процессе - 170... 250 кг/т.
Интенсификация мартеновского производства достигается использованием печей большей емкости, хорошей подготовки шихтовых материалов, автоматизации процесса плавки. Повышению производительности печей и экономии топлива способствует применение кислородного дутья.
4. Разливка стали
Выплавленную в плавильной печи сталь выпускают в сталеразливочный ковш 1 и мостовым краном переносят к месту разливки в слитки. Емкость ковша обычно определяется емкостью плавильной печи и составляет 5...250 т. Для крупных плавильных печей применяют ковши емкостью до 450 т (диаметром и высотой до 6 м).
Сталь разливают в изложницы или кристаллизаторы установок для непрерывной разливки.

 

2.2. Способы повышения качества стали


Выплавленные в кислородных конвертерах, мартеновских и электрических печах стали не всегда удовлетворяют по своим свойствам требованиям современной техники. Для повышения их качества разработаны специальные технологические процессы внепечного рафинирования и рафинирующих переплавов.
Из методов внепечного рафинирования стали наиболее широкое применение получила обработка в вакууме и жидкими синтетическими шлаками.
1. Вакуумную обработку применяют для уменьшения содержания в стали растворенных газов и неметаллических включений. С этой целью выплавленную в мартеновских или электрических печах сталь выдерживают в течение 10..,15 мин в специальных камерах с остаточным давлением 265...665 Па в ковше или при заливке в изложницу. При понижении давления растворимость газов в стали (азота, водорода) уменьшается и они в виде пузырьков всплывают на поверхность, захватывая с собой и неметаллические включения.
Вакуумная обработка позволяет уменьшить в 3...5 раз содержание газов и в 2...3 раза неметаллических включений в стали, что способствует повышению ее прочности и пластичности.
Обработка стали синтетическим шлаком заключается в следующем. В разливочный ковш перед выпуском стали из плавильного агрегата наливают 3...5 % по отношению к массе стали жидкого шлака, содержащего 55 % СаО, 42 % Al2O3, до 3 % SiO2 и 1 % FeO. Затем в ковш по возможности с большей высоты мощной струёй выпускают выплавленную сталь. В результате интенсивного перемешивания стали и шлака поверхность их взаимодействия увеличивается в сотни раз по сравнению с той, которая имеется в печи. Поэтому процессы рафинирования резко ускоряются и для их протекания требуется уже не 1,5...2 ч, как обычно в печи, а примерно столько, сколько уходит на выпуск плавки.
Рафинированная синтетическим шлаком сталь отличается низким содержанием кислорода, серы и неметаллических включений, что обеспечивает ей высокую пластичность и ударную вязкость.
К числу рафинирующих переплавов относятся: электрошлаковый, вакуумно-дуговой, плазменно-дуговой, электронно-лучевой и др.
Электрошлаковый переплав (ЭШП) заключается в следующем. Переплавляемая сталь подается в установку в виде расходуемого (переплавляемого) электрода 1. Расплавленный шлак 2 (смесь 60...65 % CaF2, 25...30 % Al2O3, CaO и другие добавки) обладает большим электросопротивлением и при прохождении электрического тока в нем генерируется тепло, достаточное для расплавления электрода. Капли металла проходят слой шлака, собираются в ванне 3 и затвердевают в водоохлажденной изложнице 4, образуя слиток 5. При этом кристаллизация металла происходит последовательно и направлена снизу вверх, что способствует удалению неметаллических включений и пузырьков газа и тем самым образованию плотной и однородной структуры слитка. В конце переплава поддон 6 опускают и затвердевший слиток извлекают из изложницы.
Современные установки ЭШП позволяют получать слитки различного сечения массой до 40 т.
Вакуумно-дуговой переплав (ВДП) осуществляется в вакуумных дуговых печах с расходуемым электродом, при этом слиток образуется, как и при ЭШП, в водоохлаждаемой изложнице. В корпусе печи поддерживается вакуум около 1,5 Па, что способствует хорошей очистке металла от газов, а направленная кристаллизация обеспечивает удаление неметаллических включений, получение плотной структуры и исключает образование усадочной раковины. Емкость печей для ВДП достигает 50 т.
Плазменно-дуговой переплав (ПДП) применяется для получения стали и сплавов особо высокой чистоты. Источником тепла в установке служит плазменная дуга с температурой 10 000... 15 000 °С Исходным материалом для получения слитков служит стружка или другие дробленные отходы металлообрабатывающей промышленности. Металл плавится и затвердевает в водоохлаждаемом кристаллизаторе, а образующийся слиток вытягивается вниз.

2.3. Прокат листа

 

Прокатка металлов, способ обработки металлов и металлических сплавов давлением, состоящий в обжатии их между вращающимися валками прокатных станов. Валки имеют большей частью форму цилиндров, гладких или с нарезанными на них углублениями (ручьями), которые при совмещении двух валков образуют т. н. калибры (см. Валки прокатные, Калибровка прокатных валков, Профилировка валков).

Дрессировка (от франц. dresser — выправлять) в технике, операция отделки в производстве тонких полос из стали и цветных металлов, состоящая в холодной их прокатке с очень малыми обжатиями (не более 3%). Как правило, металл подвергается Д. после термической обработки. В результате Д. предел текучести повышается на 30—50 Мн/м2 (3—5 кгс/мм2), благодаря чему снижается возможность образования на металле при холодной штамповке линий сдвига, портящих поверхность изделий. Д. необходима для листового металла, подвергаемого холодной штамповке с



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-14 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: