Фактическое обнаружение частиц




Реферат

Тёмная материя

 

Студентки

Специальности – живопись

Группы ХДЖ-1

Мезенцевой Есения Олеговны

 

 

Преподаватель:

Ищенко Нина Сергеевна

Соержание страницы:

1. Что входит в тёмную материю (теории);

2. Классификация;

3. Изучение тёмной материи;

4. Фактическое обнаружение частиц.

В 30-х годах ХХ в. швейцарец Ф. Цвикки наблюдал за одним из самых больших галактических скоплений в созвездии Волосы Вероники. Из наблюдений выяснилось, что видимая масса скопления гораздо меньше существующей. Эти данные подтвердились через сорок лет Верой Рубин. Стало понятно, что некая тёмная материя и тёмная энергия наполняют основной массой и галактическое пространство, и любое другое.

Наличие тёмной материи начали предполагать исходя из некоторых наблюдении:

· Скорости вращения галактик не убывают от центра к краям. Убывание скорости должно происходить, если галактическая масса соответствует видимой.

· Исследования спутников галактик и шаровых скоплений показывали, что вся масса галактики больше общей массы её звёзд и других составляющих

· Двойные галактические системы и скопления обладали большей долей тёмной материи

· В эллиптических галактиках звёздной массы не хватит, чтобы удерживать горячий газ

Из всех наблюдений выявились некоторые свойства таинственного вещества. Оно может взаимодействовать с обычным веществом. Тёмная материя в несколько раз плотнее барионного, и захватывает его частицы посредством гравитационных ям. Вследствие этого происходит свечение.+

Вокруг нашего светила, на расстояниях до 13 тыс. св. лет, больших объёмов тёмной материи не выявлено, хотя, по расчётам, концентрация её должна быть порядка 0,5 кг на объём Земли.

Обсерватория «Планк» в 2013 году опубликовала данные о составе наблюдаемой Вселенной. Обычная (барионная) материя составляет 4,9%, тёмная – 26,8%, а тёмная энергия – 68,3%. Из этого очевидно, что тёмная материя и тёмная энергия — основа нашей Вселенной.

· Барионная тёмная материя. Вполне логично допущение, что эта материя обычная, но плохо взаимодействующая электромагнитным образом. Поэтому обнаружить её не удаётся. Состав этого вещества может быть таким: звёзды-карлики, тёмные гало, нейтронные звёзды, чёрные дыры. Возможно присутствие звёзд кварковых и преонных, но они имеют статус объектов гипотетических. Такой вариант объяснения тёмной материи следует из космологии Большого взрыва. Исходя из этого, получается, что концентрация лёгких элементов должна быть резко отличной от наблюдаемой.

· Небарионная тёмная материя. Предполагаемых объектов такого вещества достаточно. Но, конечно, всё это – теоретические модели.

· Лёгкие нейтрино. Эти частицы реально существуют, и этот факт доказан. Считается, что их число во Вселенной аналогично числу фотонов. Хотя они и обладают очень малой массой, но общее число вполне может влиять на динамику пространства. Их масса в диапазоне 10-2 – 10-3 эВ. После производства некоторых экспериментов выяснилось, что лёгкие нейтрино не могут быть доминирующей частью тёмной материи.

· Тяжёлые нейтрино. Эти нейтрино названы стерильными за неспособность слабого взаимодействия. Изученные свойства этих частиц таковы, что они вполне способны составить значительную часть тёмной материи. Параметры их масс — 10-1 – 10-4 эВ.

· Аксионы. Такой тип частиц относится к гипотетическим нейтральным. Они введены в квантовую хромодинамику для решения некоторых проблем. Возможно, что они составляют существенную часть тёмной материи, несмотря на небольшую массу — 10-5эВ.

· Суперсимметричные частицы. Теоретически существует одна такая частица — LSP. Она стабильная, и не участвует в электромагнитных и сильных взаимодействиях. Ею может быть гравитино, фотино, хиггсино и некоторые другие.

· Космионы. Такие частицы ввели в физику, чтобы разрешить проблемы солнечных нейтрино. Но, после разрешения некоторых теорий, эти частицы, вероятно, исключат из числа претендентов, составляющих тёмную материю.

· Дефекты пространства-времени. В вакуумном поле Вселенной могли происходить энергетические скачки. Результатом этого могла стать различная выстроенность скалярного поля. При взаимодействии областей, имеющих различную ориентацию, образовывались дефекты разных конфигураций. Объекты, полученные при этом, наделены большой массой. Они вполне могли бы стать доминирующей составляющей тёмной материи. Но пока такие частицы не обнаружены.

Спустя множеству экспериментов учёных, появляются некоторые выводы:

· 68% темной энергии, которая остается при постоянной плотности энергии даже при расширении пространства;

· 27% темной материи, которая проявляет гравитационную силу, размывается по мере увеличения объема и не дает измерить себя при помощи любой другой известной силы;

· 4,9% обычной материи, которая проявляет все силы, размывается по мере увеличения объема, сбивается в комки и состоит из частиц;

· 0,1% нейтрино, которые проявляют гравитационное и электрослабое взаимодействия, состоят из частиц и сбиваются вместе, только когда замедляются достаточно, чтобы вести себя подобно материи, а не излучению;

· 0,01% фотонов, которые проявляют гравитационные и электромагнитные воздействия, ведут себя как излучение и размываются как по мере увеличения объема, так и при растяжении длин волн.

Со временем эти различные компоненты становятся относительно более или менее важными, а это процентное соотношение представляет, из чего сегодня состоит Вселенная.

Темная энергия, как следует из лучших наших измерений, обладает одинаковыми свойствами в любой точке пространства, во всех направлениях космоса и во все эпизоды нашей космической истории. Другими словами, темная энергия одновременно гомогенна и изотропна: она везде и всегда одинакова. Насколько мы можем судить, темной энергии не нужны частицы; она запросто может быть свойством, присущим ткани пространства.

Но темная материя принципиально другая.

 

Классификация

Начальные стадии развития Вселенной характерны термодинамическим равновесием между частицами тёмной материи и космической плазмы. В какой-то момент началось снижение температуры, из-за чего изменились параметры пролёта частиц в плазме. Все взаимодействия с барионными частицами прекратились. Исходя из значений температуры, при которых это случилось, тёмная материя разделяется на три типа:+

1. Горячая. Такой параметр тёмной материи получился из-за многократного превышения энергии частиц над их массой, случившегося в точке выхода из равновесия.

2. Холодная. Это частицы, вылетевшие из плазмы в нерелятивистском состоянии, то есть, не имеющие околосветовых скоростей. На роль таких частиц претендует класс вимпов – это массивные, но слабо взаимодействующие частицы. Они тоже пока существуют только в умах учёных. Они имеют приличную массу – больше десятков ГэВ – и остаточную концентрацию, которая способна сбалансировать энергии современной Вселенной. Сила их взаимодействия с барионным веществом позволяет надеяться на обнаружение их в прямом виде. Из теоретических разработок следует, что тёмная материяв любой галактике должна особенно концентрироваться в её центре. Но астрономические наблюдения опровергают это, показывая, что она собирается в гало вокруг галактик и наполняет межгалактические пустоты.

3. Тёплая. Такой тип материи составляют частицы, имеющие массу, не меньше 1 эВ. На выходе из равновесного состояния такие частицы были релятивистские. Они могли образоваться во время перехода из одной стадии расширения Вселенной в другую. Возможными кандидатами на роль такого типа материи стали нейтрино и LSP-гравитино.

Изучение тёмной материи

Пока известно о трёх методах, позволяющих производить прямые астрономические наблюдения.+

1. Динамический. Изучаются радиальные скорости галактик в их скоплениях при помощи современных приборов.

2. Газодинамический. Исследуется рентгеновское излучение горячих газов скоплений.

3. Расчёт слабого гравитационного линзирования. Для этого метода необходимы точные изображения очень удалённых крупнейших скоплений галактик.

Фактическое обнаружение частиц

Все частицы тёмной материи не имеют электрического заряда. Это является главной трудностью в их поиске, существующем в двух вариантах.+

1. Прямой. Используя наземную аппаратуру, проводятся изучения следствий, вытекающих из взаимодействия тёмных частиц с электронами и ядрами атомов.

2. Косвенный. Отыскиваются возможные потоки вторичных частиц, возникших в результате различных действий, например аннигиляции материи.

Альтернативные теории



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: