Закон Ома для электролитов




Распространение потенциала действия по миелинизированным волокнам

Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые.По миелинизированному волокну ПД распространяется скачкообразно (сальтаторное проведение). Для миелинизированных волокон характерна концентрация потенциалзависимых ионных каналов только в областях перехватов Ранвье; здесь их плотность в 100 раз больше, чем в мембранах безмиелиновых волокон. В области миелиновых муфт потенциалзависимых каналов почти нет. ПД, возникший в одном перехвате Ранвье, за счет электрического поля деполяризует мембрану соседних перехватов до критического уровня, что приводит к возникновению в них новых ПД, то есть возбуждение переходит скачкообразно, от одного перехвата к другому. В случае повреждения одного перехвата Ранвье ПД возбуждает 2-ой, 3-ий, 4-ый и даже 5-ый, поскольку электроизоляция, создаваемая миелиновыми муфтами, уменьшает рассеивание электрического поля. Это увеличивает скорость распространения ПД по миелинизированным волокнам по сравнению с немиелинизированными. Кроме того, миелинизированные волокна толще, а электрическое сопротивление более толстых волокон меньше, что тоже увеличивает скорость проведения импульса по миелинизированным волокнам. Другим преимуществом сальтаторного проведения является его экономичность в энергетическом плане, так как возбуждаются только перехваты Ранвье, площадь которых меньше 1 % мембраны, и, следовательно, необходимо значительно меньше энергии для восстановления трансмембранных градиентов Na+ и K+, расходующихся в результате возникновения ПД, что может иметь значение при высокой частоте разрядов, идущих по нервному волокну.Чтобы представить, насколько эффективно может быть увеличена скорость проведения за счёт миелиновой оболочки, достаточно сравнить скорость распространения импульса по немиелинизированным и миелинизированным участкам нервной системы человека. При диаметре волокна около 2 µм и отсутствии миелиновой оболочки скорость проведения будет составлять ~1 м/с, а при наличии даже слабой миелинизации при том же диаметре волокна — 15-20 м/с. В волокнах большего диаметра, обладающих толстой миелинововой оболочкой, скорость проведения может достигать 120 м/с.Скорость распространения потенциала действия по мембране отдельно взятого нервного волокна отнюдь не является постоянной величиной — в зависимости от различных условий, эта скорость может очень значительно уменьшаться и, соответственно, увеличиваться, возвращаясь к некоему исходному уровню.

 

 

Основные формы активного состояния возбудимой ткани – возбуждение и торможение. Возбуждение – это активный физиологический процесс, который возникает в ткани под действием раздражителя, при этом изменяются физиологические свойства ткани. Возбуждение характеризуется рядом признаков:

1) специфическими признаками, характерными для определенного вида тканей;

2) неспецифическими признаками, характерными для всех видов тканей (изменяются проницаемость клеточных мембран, соотношение ионных потоков, заряд клеточной мембраны, возникает потенциал действия, изменяющий уровень метаболизма, повышается потребление кислорода и увеличивается выделение углекислого газа).

По характеру электрического ответа существует две формы возбуждения:

1) местное, нераспространяющееся возбуждение (локальный ответ). Оно характеризуется тем, что:

а) отсутствует скрытый период возбуждения;

б) возникает при действии любого раздражителя;

в) отсутствует рефрактерность;

г) затухает в пространстве и распространяется на короткие расстояния;

2) импульсное, распространяющееся возбуждение.

Оно характеризуется:

а) наличием скрытого периода возбуждения;

б) наличием порога раздражения;

в) отсутствием градуального характера;

г) распространением без декремента;

д) рефрактерностью (возбудимость ткани уменьшается).

Электрограмма-график активности какого-либо органа.Видами электрограмм являются:

Электроэнцефалограмма- график электрической активности головного мозга, получаемый в процессе электроэнцефалографии.

Электрокардиограмма-запись сокращения сердца;

Электромиограмма-запись биоэлектрических потенциалов,возникающих в скелетных мышцах.

Различают также электрограмму сна и т.д

 

Модель Эйнтховена.ЭКГ

Эйнтховен предложил снимать разность биопотенциалов сердца между вершинами равностороннего треуг.(треугольника Эйнтховена),которые приблизительно расположены на правой и левой руке и левой ноге.В данном случае расположение точек установки электродов измерительного устройства по Эйнтховену получили название стандартных отведений электрокардиограммы:1 отведение-электроды устанавливаются на правой и левой руке,2 отведение-на правой руке и левой ноге,3 отведение-на левой руке и левой ноге.Поскольку амплитуда тканевых биопотенциалов пропорциональна проекции вектора возбуждения(дипольного момента)на стороны треуг.Эйнтховена,то из рисунка ясно,что наибольшая амплитуда ЭКГ будет регистрироваться во втором стандартном отведении.

Электрокардиография регистрирует биоэлектрический потенциал работающего сердца; электрический сигнал в этом случае примерно в 100 раз мощнее. Электрические сигналы регулируют работу сердца. Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ) — графического представления разности потенциалов возникающих в результате работы сердца и проводящихся на поверхность тела. На ЭКГ отражается усреднение всех векторов потенциалов действия, возникающих в определённый момент работы сердца.

Применение: Определение частоты и регулярности сердечных сокращений (например, экстрасистолы (внеочередные сокращения), или выпадения отдельных сокращений — аритмии).Показывает острое или хроническое повреждение миокарда (инфаркт миокарда, ишемия миокарда).Может быть использована для выявления нарушений обмена калия, кальция, магния и других электролитов. Выявление нарушений внутрисердечной проводимости (различные блокады).Метод скрининга при ишемической болезни сердца, в том числе и при нагрузочных пробах. Даёт понятие о физическом состоянии сердца (гипертрофия левого желудочка).Может дать информацию о внесердечных заболеваниях, таких как тромбоэмболия лёгочной артерии.В определённом проценте случаев может быть абсолютно неинформативна. Позволяет удалённо диагностировать острую сердечную патологию (инфаркт миокарда, ишемия миокарда) с помощью кардиофона.

Для измерения разности потенциалов на различные участки тела накладываются электроды.

Нормальная ЭКГ: Соответствие участков ЭКГ с соответствующей фазой работы сердца

Обычно на ЭКГ можно выделить 5 зубцов: P, Q, R, S, T. Иногда можно увидеть малозаметную волну U. Зубец P отображает работу предсердий, комплекс QRS — систолу желудочков, а сегмент ST и зубец T — процесс реполяризации миокарда.

Отведения Каждая из измеряемых разниц потенциалов называется отведением. Отведения I, II и III накладываются на конечности: I — правая рука — левая рука, II — правая рука — левая нога, III — левая рука — левая нога. С электрода на правой ноге показания не регистрируются, он используется только для заземления пациента.

 

Электропроводность – способность веществ проводить электрический ток, обусловленная наличием в них подвижных заряженных частиц (электронов, ионов и др.). Электропроводность (L) является величиной, обратной электрическому сопротивлению (R).При подаче на объект разности потенциалов (U) через него потечет электрический ток силой (I), величина которой пропорциональна электропроводности (L):

I = L • U или I = U / R.Величина электропроводности зависит от количества электрических зарядов и их подвижности. Чем больше количество зарядов и их подвижность, тем больше электропроводность.Вещества по отношению к постоянному току делят на проводники и диэлектрики. Проводники электрические – вещества, хорошо проводящие электрический ток благодаря наличию в них большого количества подвижных заряженных частиц. Они делятся на электронные (металлы), ионные (электролиты) и смешанные, где имеет место движение как электронов, так и ионов (например, плазма). Диэлектрики – твердые, жидкие и газообразные вещества, очень плохо проводящие электрический ток. Удельное сопротивление постоянному току у них составляет 108-1017 Ом • см. Особое место занимают полупроводники – вещества, электропроводность которых при обычных условиях весьма низка, но она резко возрастает с температурой. На их электропроводность влияют и другие внешние воздействия: свет, сильное электрическое поле, поток быстрых частиц и др.

Электропроводность живых тканей определяется концентрацией ионов и их подвижностью, которые весьма неодинаковы в различных тканях, в связи с чем биологические объекты обладают свойствами как проводников, так и диэлектриков. Удельная электропроводность целых органов и тканей существенно меньше, чем составляющих их сред. Ее наибольшие величины (0,6-2,0 См • м-1) имеют жидкие среды организма (кровь, лимфа, желчь, моча, спинно-мозговая жидкость), а также мышечная ткань (0,2 См • м-1). Напротив, удельная электропроводность костной, жировой, нервной ткани, а в особенности грубоволокнистой соединительной ткани и зубной эмали чрезвычайно низкая (10-3-10-6 См • м-1).

Закон Ома для электролитов

J= g E

J- плотность тока в электролите

Е напряженность электрического поля.

g- электропроводность электролита

a - коэффициент диссоциации, отношение концентрации ионов к

концентрации молекул вещества.

q – заряд ионов

n0- концентрация молекул растворенного ввещества.

h- вязкость жидкости

r – радиус сольвата.

 

Электрический импеданс -это отношение комплексной амплитуды напряжения гармонического сигнала, прикладываемого к двухполюснику, к комплексной амплитуде тока, протекающего через двухполюсник. При этом импеданс не должен зависеть от времени: если время t в выражении для импеданса не сокращается, значит для данного двухполюсника понятие импеданса неприменимо.Понятие импеданса применимо, если при приложении к двухполюснику гармонического напряжения, ток, вызванный этим напряжением, также гармонический той же частоты. Электрический импеданс состоит из реактивной и активной составляющей: Z = R + Xc

Между зависимостями Z(f) и e(f) имеется связь, но это не идентичные процессы. Например, крутые и пологие участки Z(f) и e(f) обычно совпадают.

Принято считать, что дисперсия импеданса) отражает более широкий круг электромагнитных процессов в биоткани и более выражено зависит от процессов жизнедеятельности (на этот счёт имеются обширные экспериментальные данные).По зависимости импеданса Z от частоты можно судить об уровне обмена веществ. Также имеется возможность оценить степень жизнеспособности органов и тканей.

Импеданс реальных элементов может быть измерен специальными приборами: измерителем RLC или анализатором импеданса. Эти приборы позволяют производить измерения в широком диапазоне частот и при различных напряжениях смещения.

Применение импеданса

Введение импеданса позволяет описывать поведение двухполюсника с реактивными свойствами при воздействии на него гармонического сигнала. Кроме того, в случае негармонического сигнала импеданс применяется столь же успешно. Для этого сигнал раскладывается на спектральные компоненты при помощи ряда Фурье или преобразования Фурье и рассматривается воздействие каждой спектральной компоненты. Вследствие линейности двухполюсника сумма откликов на спектральные компоненты равна отклику на исходный негармонический сигнал.

 

При гальванизации ткани орг-ма подвергаются воздействию пост. Электрического тока(до 50 мА) от внешнего источника напряжения. При этой физиотерапии основными механизмами,определяющими лечебный эффект,являются ионная поляризация,накопление ионов на клеточных мембранах и изменение функционального состояния тканей.Для проведения гальвинизации используется выпрямитель постоянного тока,напряжение с которого при помощи металлических электродов,пропускают через организм.Между электродами и тканями устанавливается матерчатая прокладка,смоченная электропроводящим раствором(обычно р-ром NaCl). Необходимость в такой прокладке объясняется тем,что электрическое сопротивление на границе между электродом и биологическим объектом достаточно велико и из-за этого в этом месте выделяется большое кол-во тепла и возможен ожог ткани.Во-вторых,при пропускании электрич. Токов через электролит в результате электрохим. Реакций могут образовываться токсические вещ-ва,которые вызывают химич. Раздражание кожи.Наряду с гальванизацией в последние годы достаточно широкое распространение получил лекарственный электрофорез.Теоретическую основу метода составляет теория электролитической диссоциации Аррениуса,согласно которой молекулы электролитов при растворении в большей или меньшей степени распадаются на положит. и отриц. ионы,способные направленно двигаться в поле пост.тока.В соответствии с ионной теорией лекарственные вещ-ва при электрофорезе вводятся в орг-м соответственно их полярности:катионы-с анода,анионы-с катода. Основными путями проникновения лекарств в ткани явл.выводные протоки потовых и сальных желез.

 

 

Действие переменного тока на организм существенно зависит от его частоты. При низких, звуковых и ультразвуковых частотах переменный ток, как и постоянный, оказывает раздражающее действие на биологические ткани. Это обусловлено смещением ионов растворов электролитов, их разделением, изменением их концентрации в разных частях клетки и межклеточного пространства.

Действие переменного тока используют в методе диатермии

При прохождении через ткани переменного тока ионы электролитов, входящих в состав тканей, приходят в колебательное движение. С увеличением частоты тока время движения ионов в одном направлении, следовательно, и их максимальное смещение уменьшаются. Соответственно уменьшается и раздражающее действие тока. При частоте колебаний порядка несколько сотен килогерц смещение становится соизмеримым со смещением в процессе теплового (молекулярного) движения, и переменный ток никакого раздражающего действия на ткани организма не оказывает.

Тепловое действие тока при диатермии определяется, в основном, ионными потерями, т.е. выделением тепла, происходящим при колебательном движении ионов. В связи с относительно низкой частотой, используемой при диатермии, диэлектрические потери в тканях невелики.

 

 

Под влиянием раздражения импульсным током волна возбуждения быстро распространяется по мышечным волокнам. Происходит пассивное сокращение мышцы.

При прохождении через ткани импульсных однонаправленных токов низкой частоты в тканях происходят те же физико-химические явления, что и при воздействии постоянным током. Однако процессы эти происходят дискретно в зависимости от частоты импульсов, а степень их выраженности и физиологический эффект зависят от частоты, формы, длительности импульсов, скважности и адекватности их функциональным возможностям тканей.

Основными параметрами импульсного тока являются: частота повторения импульсов, длительность импульса; форма импульсов, обусловленная крутизной переднего и заднего фронтов; амплитуда. В зависимости от этих характеристик они могут оказывать возбуждающее действие и использоваться для электростимуляции мышц или оказывать тормозящее действие, на чем основано их применение для электросна и электроаналгезии. Реобаза-минимальная сила раздражающего тока при большой длительности его действия.Хронаксия-минимальное время действия тока,равного2-м реобазам.

 

Электрическое поле-одна из составляющих эл-маг. поля,особый вид материи,существующий вокруг тел или частиц,обладающих эл.зарядом.

УВЧ-терапия-метод электролечения,основанный на воздействии на орг-м больного преимущественно ультравысокочастотного электромагнитного поля.Физическое действие УВЧ заключается в активном поглощении Е поля тканями и преобразовании ее в тепловую Е.Основное теплообразование происходит в тканях,плохо проводящих эл.ток. Интенсивность теплообразования зависит от мощности воздействия

 

 

Маг поле — составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Кроме того, магнитное поле может создаваться током заряженных частиц, либо магнитными моментами электронов в атомах.

Индуктотермия-метод электролечения,действующим фактором которого явл.высокочастотное переменное маг.поле.Действие Е этого поля вызывает появление наведенных вихревых токов,механич.Е которых переходит в тепло.Расширяются сосуды,ускоряется кровоток,снижается артериальное давление,улучшается коронарное кровообращение.Происходит также понижение тонуса мышц,что имеет знач.при спазме гладкой мускулатуры.Показаниями к назначению индуктотермии явл.хронич.воспалит.забол. внутр.органов,органов малого таза,ЛОР-органов,забол. и и травмы ОД-аппарата и т.д

 

Редуцированный глаз -условная оптическая система, обладающая теми же свойствами в смысле преломления лучей, как и настоящий глаз, но значительно более удобная для всякого рода расчетов. Как известно, всякая система сферических оптических поверхностей, через центры которых можно провести прямую, имеет шесть кардинальных точек: а) две главные точки, б) две узловые точки и в) две фокусные точки. Если поместить предмет в первой главной точке, то его изображение, равное по величине предмету, будет казаться находящимся во второй. Луч, проходящий через первую узловую точку, кажется после преломления выходящим из второй узловой точки. В человеческом глазу главные и узловые точки чрезвычайно близки одни к другим и потому возможно без особенной ошибки вместо всех преломляющих поверхностей глаза условно взять одну оптическую поверхность. Такой воображаемый условный глаз и носит название Р. г. Он имеет показатель преломленияь равный 1,33, радиус оптической поверхности—■ 5 мм, фокусное расстояние—15,5 мм и расстояние до "сетчатки—22,6 мм

Опти́ческая си́ла — величина, характеризующая преломляющую способность осесимметричных линз и центрированных оптических систем из таких линз. Измеряется оптическая сила в диоптриях

Обратно пропорциональна фокусному расстоянию системы.Оптическая сила положительна у собирающих систем и отрицательна в случае рассеивающих. Оптическая сила светопреломляющей системы глаза составляет 60 - 65 диоптрий. Около 70 % оптической силы дает преломление света на поверхности роговой оболочки, остальное приходится на долю хрусталика. С возрастом в результате потери влаги эластичность хрусталика уменьшается и он становится более плоским.

Оптическую силу системы дальнозоркого глаза нужно, наоборот, усилить, чтобы изображение попало на сетчатку.

 

 

АККОМОДАЦИЯ ГЛАЗА - изменение преломляющей силы глаза, обеспечивающее его способность ясно видеть предметы, находящиеся на различных расстояниях. Физиологический механизм АККОМОДАЦИИ ГЛАЗА состоит в том, что при сокращении волокон ресничной мышцы глаза происходит расслабление ресничного пояска, с помощью которого хрусталик прикреплен к ресничному телу. При этом уменьшается натяжение сумки хрусталика, и он благодаря своим эластическим свойствам становится более выпуклым. Расслабление ресничной мышцы ведет к утолщению хрусталика (рис.). Иннервация ресничной мышцы осуществляется глазодвигательным и симпатическим нервами.

АККОМОДАЦИЯ ГЛАЗА возможна в пределах, ограниченных ближайшей и дальнейшей (наиболее отдаленной) точками ясного зрения. Первая определяется наименьшим расстоянием, на котором можно читать мелкий шрифт; вторая - наибольшим расстоянием, на котором ясно различим предмет при отсутствии АККОМОДАЦИЯ ГЛАЗА. Увеличение преломляющей силы оптической системы глаза, достигаемое при максимальном напряжении АККОМОДАЦИИ ГЛАЗА, называют объемом, или силой АККОМОДАЦИИ ГЛАЗА. Объем АККОМОДАЦИЯ ГЛАЗА снижается с возрастом вследствие уменьшения эластичности хрусталика.

 

 

Механизм фоторецепции связан с распадом молекул родопсина и йодопсина при действии световой энергии. Это запускает цепь биохимических реакций, которые сопровождаются изменением проницаемости мембран в палочках и колбочках и возникновением потенциала действия. После распада зрительного пигмента следует его ресинтез, что происходит в темноте и при наличии витамина А. Недостаток в пище витамина А может приводить к нарушению сумеречного зрения (куриная слепота). Цветовая слепота (дальтонизм) объясняется генетически обусловленным отсутствием в сетчатке одного или нескольких типов колбочек.

Возбуждение нейросенсорной клетки передается посредством центрального отростка на 2-й биполярный нейрон. Тела биполярных нейронов лежат во внутреннем ядерном слое сетчатки. В этом слое, кроме биполярных нейронов, находятся ассоциативные нейроны еще двух типов: горизонтальные и амакринные. Биполярные нейроны соединяют палочковидные и колбочковидные зрительные клетки с нейронами ганглионарного слоя. При этом колбочковидные клетки контактируют с биполярными нейронами в соотношении 1:1, тогда как с одной биполярной клеткой образуют соединения несколько палочковидных клеток.

Горизонтальные нервные клетки имеют много дендритов, с помощью которых контактируют с центральными отростками фоторецепторных клеток. Аксон горизонтальных клеток также вступает в контакт с синаптическими структурами между рецепторной и биполярной клетками. Здесь возникают множественные синапсы своеобразного типа. Передача импульсов через такой синапс и далее с помощью горизонтальных клеток может вызывать эффект латерального торможения, что увеличивает контрастность изображения объекта. Сходную роль выполняют амакринные нейроны, расположенные на уровне внутреннего сетчатого слоя. У амакринных нейронов нет аксона, но есть разветвленные дендриты. Тело нейрона играет роль синаптической поверхности. Ганглионарные клетки образуют слой такого же названия. Это наиболее крупные нервные клетки сетчатки. Они составляют 3-й компонент нейронной цепи. Аксоны этих клеток дают слой нервных волокон, формирующих зрительный нерв.

Поддерживающие элементы в сетчатке представлены глиальными клетками (мюллеровыми волокнами) и астроцитами. Мюллеровы волокна — это крупные нейроглиальные клетки с отростками, которые располагаются вертикально по всей толщине сетчатки, оплетают нейроны сетчатки, выполняя поддерживающую и трофическую функции. Ядра клеток располагаются на уровне внутреннего ядерного слоя. Наружные отростки клеток заканчиваются многочисленными цитоплазматически-ми выростами (микроворсинками), которые формируют наружную пограничную мембрану, а внутренние — завершаются на границе со стекловидным телом (формируя внутренюю пограничную мембрану). В сетчатке есть желтое пятно с центральной ямкой. Это — место наилучшего видения. Здесь много колбочковых нейронов. Имеется также слепое пятно, которое соответствует месту выхода зрительного нерва.

Одна из основных функций глаза — острота зрения, или способность распознавания минимальных по размеру объектов на максимальном расстоянии.

Человеческий глаз способен работать при очень больших колебаниях яркости. Приспособление глаза к различным уровням яркости называется адаптацией.

Различают световую и темновую адаптации.

Световая адаптация — снижение чувствительности глаза к свету при большой яркости поля зрения. Механизм световой адаптации: работает колбочковый аппарат сетчатки, зрачок суживается, зрительный пигмент подымается с глазного дна.Темновая адаптация — повышение чувствительности глаза к свету при малой яркости поля зрения. Механизм темновой адаптации: работает палочковый аппарат, зрачок расширяется, зрительный пигмент опускается ниже сетчатой оболочки. При яркостях от 0,001 до 1 кд/кв.м происходит совместная работа палочек и колбочек. Это так называемое сумеречное зрение.

 

 

Спектральная чувствительность. Человеческий глаз лучше всего различает цвета в средней части спектра — от голубого до оранжевого. Здесь достаточно изменения длины волны на 1 — 2 нм для того, чтобы почувствовать изменение цвета. В области красного и фиолетового цветов разностный порог резко увеличивается, доходя до десятков и сотен нанометров.

 

Зависимость цветового тона от освещенности (яркости). При нормальной дневной освещенности рассеянным светом хорошо воспринимаются все цвета спектра. Если освещенность снижается (сумеречное состояние), то красный, зеленый и синий цвета сохраняют свой цветовой тон, а промежуточные между ними изменяются в направлении сближения с основными. Так, оранжевый становится краснее, желтый приближается к оранжевому, голубой и фиолетовый синеют; желто-зеленые и зелено-голубые теряют свои оттенки и приближаются к спектральному зеленому. Если яркость световых потоков снижается почти до состояния темноты — различаются только три основных цвета — красный, зеленый и синий. В сгущающихся сумерках последним исчезает синий цвет, превращаясь в белесый, а красный превращается в черный. Изменение цветов при уменьшении их яркости называют явлением Бецольда — Брюкке.

Трехкомпонентная теория цветового зрения:

Согласно этой теории, в нашем органе зрения существуют три цветоощущающих аппарата: красный, зеленый и синий. Каждый из них возбуждается в большей или меньшей степени, в зависимости от длины волны излучения (света). Затем возбуждения суммируются аналогично тому, как это происходит при слагательном смешении цветов. Сумма возбуждений ощущается нами как тот или иной цвет. Авторы этой теории — М. В. Ломоносов, Т. Юнг и Г. Гельмгольц. Трехкомпонентная теория хорошо объясняет важнейшие закономерности цветового зрения — адаптацию, индукцию, цветовую слепоту, спектральную чувствительность глаза, зависимость цвета от яркости и др. Однако, следует заметить, что в наше время известны факты, свидетельствующие о более сложной картине функционирования органа зрения.

Дальтонизм, или цветовая слепота – это состояние, при котором нарушено нормальное восприятие некоторых цветов. Связана данная патология с нарушением функции некоторых клеток сетчатки глаза, которые отвечают за восприятие цвета.Причина дальтонизма может быть наследственной природы или связана с заболеванием зрительного нерва либо сетчатки. Для приобретенного дальтонизма характерно то, что патология имеет место только в том глазу, где имеется поражение сетчатки или зрительного нерва. Кроме того, он характеризуется прогрессирующим ухудшением и затруднением в различении синего и желтого цветов.Наиболее часто при дальтонизме имеет место трудность в различении красного и зеленого цвета.При наследственном дальтонизме, который встречается чаще, патология отмечается в обоих глазах, при этом состояние со временем не прогрессирует, как при приобретенном. Наследственный дальтонизм в разной степени выраженности имеет место у 8% мужчин и 0,4% женщин. Отмечено, что наследственный дальтонизм сцеплен с X-хромосомой и практически всегда передается от матери-носителя патологического гена к сыну.Дальтонизм может быть как частичным, когда имеет место трудность в различении с отдельных цветов, так и полным, при котором затруднено различие всех цветов. Как правило, полный дальтонизм довольно редко и обычно в сочетании с другими серьезными врожденными дефектами глаза.Клетки, ответственные за восприятие цвета в сетчатке глаза – это колбочки. Эти клетки обычно сконцентрированы в самой центральной части сетчатки – макуле. Колбочки бывают трех типов: первый тип – в котом содержится пигмент, чувствительный к красному цвету, второй – с пигментом к зеленому цвету и третий – с пигментом к синему.Дальтонизм – нарушение восприятия цвета – появляются в том случае, когда имеет место отсутствие, либо недостаток какого-либо пигмента, либо когда он функционально нерабочий. Нормальное цветовое зрение называется трихромазией. В случае, когда одного цветового пигмента недостаточно для цветового зрения, говорят об аномальной трихромазии. При полном же отсутствии какого-либо пигмента имеет место дихромазия.

 

Устройство микроскопа

Оптическая система микроскопа состоит из основных элементов — объектива и окуляра. Они закреплены в подвижном тубусе, расположенном на металлическом основании, на котором имеется предметный столик.В современном микроскопе практически всегда есть осветительная система (в частности, конденсор с ирисовой диафрагмой), макро- и микро- винты для настройки резкости, система управления положением конденсора.В зависимости от назначения, в специализированных микроскопах могут быть использованы дополнительные устройства и системы.

Иммерсия в микроскопии — это введение между объективом микроскопа и рассматриваемым в нём предметом жидкости для усиления яркости и расширения пределов увеличения изображения.Увеличение микроскопа-это произведение увеличения объектива на увеличение окуляра.Предел разрешения-это наименьшее расстояние между 2-мя близко расположенными точками предмета,различимыми в микроскоп.Разрешающая способность-это способность микроскопа давать раздельные изображения мелких деталей рассматриваемого предмета.

 

Устройство,позволяющее получать поляризованный свет из естественного наз. поляризатором. При этом через поляризатор проходит поляризованный свет,интенсивность которого равна половине интенсивности падающего света.При вращении поляризатора относит.луча естественного света поворачивается плоскость колебаний вышедшего плоскополяризованного света,но интенсивность его не изменяется. Вращение плоскости поляризации заключается в повороте плоскости поляризации плоскополяризованного света при прохождении через вещ-во. Вещ-ва,обладающие таким св-вом наз.оптически активными. Метод сахариметрии широко используют в медецине для опред.конц.сахара в моче,в биофизич.исследованиях,а также в пищевой пром. Соответствующие измерит.прборы наз.сахариметрами.Сахариметр позволяет измерять не только конц.,но и удельное вращение.Вращение плоскости поляризации р-рами обусловлено взаимод.электромаг.волны с ассиметрич.молек.растворенного оптич.активного вещ-ва.

Закон Малюса — зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.

Свет с иной (не линейной) поляризацией может быть представлен в виде суммы двух линейно-поляризованных составляющих, к каждой из которых применим закон Малюса. По закону Малюса рассчитываются интенсивности проходящего света во всех поляризационных приборах, например в поляризационных фотометрах и спектрофотометрах. Потери на отражение, зависящие от и не учитываемые законом Малюса, определяются дополнительно

 

 

Давление света - давление, производимое светом на отражающие или поглощающие тела.

Фото́н — элементарная частица, квант электромагнитного излучения (в узком смысле — света). Это безмассовая частица, способная существовать только двигаясь со скоростью света. Электрический заряд фотона также равен нулю.

Если фотоны обладают импульсом, то свет, падающий на тело, должен оказывать на него давление. Согласно квантовой теории, давление света на поверхность обусловлено тем, что каждый фотон при соударении с поверхностью передает ей свой импульс.

 

Дифракция электронов на решетке кристалла никеля становится заметной лишь при таких скоростях движения электронов, при которых их дебройлевская длина волны становится сравнимой с постоянной решетки.При этом условии дифракционная картина, получаемая от электронного пучка, становится подобной картине дифракции пучка рентгеновских лучей с такой же длиной волны. На рисунке 4 представлены фотографии дифракционных картин, наблюдающихся при прохождении пучка света и пучка электронов у края экрана.Гипотеза де Бройля и атом Бора. Гипотеза о волновой природе электрона позволила дать принципиально новое объяснение стационарным состояниям в атомах. Для того чтобы понять это объяснение, выполним сначала расчет длины дебройлевской волны электрона, движущегося по первой разрешенной круговой орбите в атоме водорода. Это значит, что в атоме водорода, находящемся в первом стационарном состоянии, длина дебройлевской волны электрона в точности равна длине его круговой орбиты! Этот результат позволяет выразить постулат Бора о стационарных состояниях в такой форме: электрон вращается вокруг ядра неопределенно долго, не излучая энергии, если на его орбите укладывается целое число длин волн де Бройля

. В 1924 г. французский физик Луи де Б рой ль впервые высказал идею, согласно которой одновременное проявление корпускулярных и волновых свойств присуще не только свету, но и любому другому материальному объекту. Эта идея была лишь теоретической гипотезой, так как в то время наука не располагала экспериментальными фактами, которые бы подтверждали существование волновых свойств у элементарных частиц и атомов. В этом заключалось существенное отличие гипотезы де Бройля о волновых свойствах частиц от гипотезы Эйнштейна о существовании фотонов света, выдвинутой им после открытия явления фотоэффекта.

Гипотеза де Бройля существовании волн материи была детально разработана, и полученные из нее следствия могли быть подвергнуты экспериментальной проверке. Основное предположение де Бройля заключалось в том, что любой материальный объект обладает волновыми свойствами и длина волны связана с его импульсом таким же соотношением, каким связаны между собой длина световой волны и импульс фотона. Найдем выражение, связывающее импульс фотона р с длиной волны света. Импульс фотона определяется формулой: P=mc. Из уравнения Е=mс2=hv (2)можно определить массу фотона.Вычисленная таким образом из опытных данных длина волны совпала по значению с дебройлевской длиной волны.Интересны результаты другого опыта, в котором пучок электронов направлялся на монокристалл, но расположение приемника и кристалла не изменялось. При изменении ускоряющего напряжения, т. е. скорости электронов, зависимость силы тока через гальванометр от ускоряющего напряжения имела вид, представленный на рисунке 3. Электронный пучок испытывал наиболее эффективное отражение при скоростях частиц, удовлетворяющих - условию дифракционного максимума.Последующие эксперименты полностью подтвердили правильность гипотезы де Бройля и возможность использования уравнения для расчета длины волны, связанной с любым материальным объектом. Обнаружена дифракция не только элементарных частиц (электрон, протон, нейтрон), но и атомов.Выполнив расчеты длины дебройлевской волны для различных материальных объектов, можно понять, почему мы не замечаем в повседневной жизни волновых свойств окружающих нас тел. Их длины волн оказываются столь малыми, что проявление волновых свойств невозможно обнаружить. Так, для пули массой 10 г, движущейся со скоростью 660 м/с, длина дебройлевской волны равна

 

 

Фотометрия — раздел оптики, в котором исследуются энергетические характеристики света при его испускании, распространении и взаимодействии с телами. Оперирует фотометрическими величинами. Фотометри́ческая величина́ — аддитивная физическая величина, определяющая временно́е, пространственное, спектральное распределение энергии оптического излучения и



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: