Блок 3. Задачи на вычисление.




1. Окруж­ность с цен­тром на сто­ро­не AC тре­уголь­ни­ка ABC про­хо­дит через вер­ши­ну C и ка­са­ет­ся пря­мой AB в точке B. Най­ди­те диа­метр окруж­но­сти, если AB = 15, AC = 25. Ответ:16

2. Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 49°, 69° и 62°. Ответ: 82°, 42°, 56°

3. Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус равно 8. Ответ: 4

4. Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AK = 18, а сторона AC в 1,2 раза больше стороны BC. Ответ:15

5. Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB =16, DC = 24, AC = 25. Ответ:15

6. В тре­уголь­ни­ке АВС углы А и С равны 40° и 60° со­от­вет­ствен­но. Най­ди­те угол между вы­со­той ВН и бис­сек­три­сой BD. Ответ: 10

7. От­рез­ки AB и DC лежат на па­рал­лель­ных пря­мых, а от­рез­ки AC и BD пе­ре­се­ка­ют­ся в точке M. Най­ди­те MC, если AB = 10, DC = 25, AC = 56. Ответ: 40

8. Бис­сек­три­сы углов A и D па­рал­ле­ло­грам­ма ABCD пе­ре­се­ка­ют­ся в точке, ле­жа­щей на сто­ро­не BC. Най­ди­те BC, если AB = 34. Ответ: 68

9. Пря­мая, па­рал­лель­ная ос­но­ва­ни­ям и тра­пе­ции , про­хо­дит через точку пе­ре­се­че­ния диа­го­на­лей тра­пе­ции и пе­ре­се­ка­ет ее бо­ко­вые сто­ро­ны и в точ­ках и со­от­вет­ствен­но. Най­ди­те длину от­рез­ка , если , . Ответ: 12

10. В прямоугольном треугольнике АВС с прямым угломС известны катеты: АС=6, ВС=8. Найдите медиану СК этого треугольника. Ответ:5

11. Окружность проходит через вершины А и С треугольника АВС и пересекает его стороны АВ и ВС в точках К и Е соответственно. Отрезки АЕ и СК перпендикулярны. Найдите ∠КСВ, если∠АВС = 20°. Ответ:35

12. В треугольнике АВС углы А и С равны 20° и 60° соответственно. Найдите угол между высотой ВН и биссектрисой BD. Ответ: 20

13. Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит её пополам. Найдите сторону АС, если сторона АВ равна 4. Ответ: 8

14. Катет и гипотенуза прямоугольного треугольника равны 18 и 30. Найдите высоту, проведённую к гипотенузе. Ответ: 14,4

15. Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH = 16. Ответ: 16

16. Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AP = 18, а сторона BC в 1,2 раза меньше стороны AB. Ответ:15

17. Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN = 13, AC = 65, NC = 28. Ответ: 7

18. Найдите отношение двух сторон треугольника, если его медиана, выходящая из их общей вершины, образует с этими сторонами углы в 30° и 90°. Ответ: 1:2

19. Вы­со­та тре­уголь­ни­ка раз­би­ва­ет его ос­но­ва­ние на два от­рез­ка с дли­на­ми 8 и 9. Най­ди­те длину этой вы­со­ты, если из­вест­но, что дру­гая вы­со­та тре­уголь­ни­ка делит ее по­по­лам.

Ответ: 12

20. Биссектрисы углов А и В при боковой стороне АВ трапеции АВСД пересекаются в точке F. Найдите AB, если AF=24. BF=10. Ответ: 26

21. Диагонали АС и ВД трапеции АВСД пересекаются в точке О. Площади треугольников АОД и ВОС равны соответственно 16 и 9. Найдите площадь трапеции. Ответ: 49

22. В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 2. Найдите площадь трапеции. Ответ:

23. Ос­но­ва­ния тра­пе­ции равны 16 и 34. Най­ди­те от­ре­зок, со­еди­ня­ю­щий се­ре­ди­ны диа­го­на­лей тра­пе­ции. Ответ: 9

24. Бис­сек­три­сы углов A и D па­рал­ле­ло­грам­ма ABCD пе­ре­се­ка­ют­ся в точке, ле­жа­щей на сто­ро­не BC. Най­ди­те AB, если BC = 34. Ответ: 17

25. Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC = 19, а расстояние от точки K до стороны AB равно 7. Ответ: 266

26. Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 30° и 120°, а CD = 25. Ответ:

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: