Переваривание углеводов.




Углеводы.

Ещё около ста лет назад углеводами было предложено называть соединения, состав которых соответствовал формуле (CHOH)n, то-есть гидраты углерода. Причём n, то-есть число углеродных атомов, в зависимости от типа углеводов, может варьироваться от трёх до нескольких тысяч. Биологические функции углеводов многообразны и зависят от вида углеводов или их производных. Углеводы составляют около 2% массы животного организма (в растениях углеводы составляют до 80%). Наибольшее количество углеводов содержится в печени, в соединительной ткани. Основными функциями углеводов являются:

1) Энергетическая (при расщеплении 1 г углеводов образуется 4,1 – 4,2 ккал

2) Пластическая или структурная (строительная);

3) Защитная (в комплексе с белками);

4) Регуляторная (тоже в комплексе с белками);

5) Рецепторная (тоже в комплексе с белками) и др.

Все углеводы делятся на следующие классы:

Моносахариды (мономерные единицы), их иногда называют простые сахара. Вообще «сахарид» – в переводе с греческого – «сладкий». И, действительно, многие простые сахара сладкие на вкус. 2. Олигосахариды (два или несколько мономеров, соединённые в одну цепочку). 3. Полисахариды – соединения с высокой молекулярной массой, содержащие от ста до нескольких тысяч мономеров.

Моносахариды.

Впервые структуру некоторых моносахаридов установил во второй половине XIX века Фишер. Все простые моносахариды имеют общую эмпирическую формулу (CHOH)n, где n – целое число от трёх до девяти. Независимо от числа углеродных атомов все сахариды можно отнести к одному из двух классов: альдозам или кетозам (окончание –оза обозначает принадлежность к углеводам). Альдозы содержат функциональную альдегидную группу

Н

О

, а кетозы содержат функциональную группу=С=О. По числу углеродных атомов различают альдо- и кето- триозы, тетрозы, пентозыи т.д. Деление на альдозы и кетозы можно проводить и по другому признаку: если карбонильная группа (=С=) расположена в конце цепочки, то это альдоза, а если карбонильная группа расположена в любом другом месте, то это – кетоза, или соответственно, альдегид или кетон.

В животных тканях содержатся следующие моносахариды:

О

Ø Триозы: С СН2ОН

Н

Н С ОН С = О

СН2ОН СН2ОН

D – глицериновый альдегид (альдоза) Дигидроксиацетон (кетоза) В природе преобладают сахара с D - конфигурацией:

Ø Тетрозы: О

С

Н

Н – С – ОН

|

Н – С – ОН D – эритроза (альдоза)

|

СН2ОН

Число изомеров для моносахаров равно 2m, где m- число асимметричных атомов углерода. У триоз это С2, у тетроз - С2, С3, у пентоз- С2, С3, С4, и у гектоз – С2, С3, С4, С5 =16 изомерами

 

Пентозы:

О О

С С СН2ОН

Н Н

Н – С – ОН Н – С – Н С = О

Н – С – ОН Н – С – ОН Н – С – ОН

 

Н – С – ОН Н – С – ОН Н – С – ОН

 

СН2ОН СН2ОН СН2ОН

D-рибоза 2 - дезокси- D-рибулоза (кетоза)

(альдоза) D-рибоза (альдоза)

О

С СН2ОН

Н

Н – С – ОН С = О

 
 


НО – С – Н НО – С – Н

 

Н – С – ОН Н – С – ОН

 

СН2ОН СН2ОН

D – ксилоза (альдоза) D – ксилулоза (кетоза)

 

 

К гексозам относятся:

О О

С СН2ОН С

Н Н

Н – С – ОН С = О НО – С – Н

НО – С – Н НО – С – Н НО – С – Н

 

Н – С – ОН Н – С – ОН Н – С – ОН

 

Н – С – ОН Н – С – ОН Н – С – ОН

           
     


СН2ОН СН2ОН СН2ОН

D – глюкоза D – фруктоз D –маноза

 

О О

С С

Н Н основной

Н – С – ОН НО – С – Н углеводный

компонент

НО – С – Н Н – С – ОН гликопротеинов,

входит в состав

НО – С – Н Н – С – ОН клеточных мембран

Н – С – ОН НО – С – Н

       
   


СН2ОН СН3

D - галактоза L – фукоза (6-дезокси-L-галактоза)

 

Ø Гептозы:

СН2ОН

 

С = О

 

НО – С – Н

Н – С – ОН

 
 


Н – С – ОН

 
 


Н – С – ОН

 
 


СН2ОН

Седогептулоза

Все перечисленные моносахара либо поступают в организм с пищей, либо образуются в процессах обмена. Это бесцветные, твердые кристаллические вещества, хорошо растворимые в воде. Моносахара обеспечивает большую часть энергии и основное количество углерода, необходимого для синтеза белков, жиров и других углеводов.

Как правило, моносахариды с малым числом углеродных атомом (триозы, тетрозы) имеют строение в виде прямолинейных цепочек. А моносахариды с числом углеродных атомов 5 и больше имеют замкнутую циклическую структуру; для написания этой структуры используют формулы Хеуорса (1929 г.)

 

 

О Сu2 ОН

С Н – С – ОН

Н H O H

Н – С – ОН Н – С – ОН H

НО – С – Н НО – С – Н О OH H

OH OH

Н – С – ОН Н – С – ОН H OH

D - глюкоза

Н – С – ОН- Н – С (формула Хеуорса)

 
 


СН2ОН СН2ОН

D – глюкоза D – глюкоза – полуацеталь

(линейная формула) (формула Фишера) О

Из-за внешнего сходства с органическим веществом пираном:

глюкозу, написанную с помощью формулы Хеуорса, называют a-D-глюкопироназой. Всё, что расположено справа от атомов углерода при написании формулы Фишера, расположено внизу при написании формулы Хеуорса. a и bопределяются по расположению группы –ОН при первом углеродном атоме (справа или внизу -a; слева или вверху - b). Последняя группа СН2ОН (у последнего атома С) всегда пишется сверху.

Для пятичленных циклов характерно сходство с химическим соединением фураном: О;

 

поэтому написанные в таком виде моносахара

называют фуранозами:

СН2ОН НО – С – СН2ОН HOH2C O OH

С = О НО – С – Н О H OH

H CH2OH

НО – С – Н Н – С – ОН

OH H

Н – С – ОН Н – С

 

Н – С – ОН СН2ОН

 
 


СН2ОН

D – фруктоза b-D-фруктоза b-D-фруктофураноза

(линейная формула) (формула Фишера) (формула Хеуорса)

Кроме моносахаридов в составе тканей организма есть и их производные, которые образуются в ходе реакций сахаров с использованием

реакционно-способных групп – ОН, - С = О, = С = О, т. е. спиртовой, альдегидной и кетонной. Н

К производственным моносахаров относятся:

Ø Сложные эфиры (чаще фосфорные, реже сернокислые).

СН2ОН СН2ОРО3Н2

       
   
 


Н О Н Н О Н

Н +АТФ Н +АДФ

ОН Н глюкокиназа ОН Н

ОН ОН ОН ОН

 

Н ОН Н ОН

a-D-глюкоза (глюкопираноза) Глюкозо-6-фосфат

В этой реакции АТФ является не только источником энергии, но и является донором фосфатной группы. Известны несколько киназ, участвующих в образовании монофосфорных эфиров, например, таких как глюкозо-6-фосфат, фруктозо-6-фосфат, рибозо-5-фосфат, галактозо-1-фосфат. Некоторые фосфорные эфиры образуются иначе например, глюкозо-1-фосфат образуется в ходе постАДНйного расщепления глюкогена или при изомеризации глюкозо-6-фосфата. Возможно и образование эфиров, содержащих две фосфатные группы, например, фруктозо-1,6-дифосфат. Биологическое значение сахарофосфатов основано на том, что они представляют собой активные формы сахаров. Помимо увеличения реакционной способности сахаров, клетке фосфорилирование сахаров выгодно еще и потому, что клеточная мембрана малопроницаема для фосфорных эфиров сахаров, благодаря чему клетка способна удерживать моносахара. В свою очередь, сахаро-1-фосфаты могут взаимодействовать с нуклеозидтрифосфатами (УТФ, АТФ,. ГТФ,. ЦТФ,ТТФ) с образованием нуклеозиддифосфат-сахаров, например,

СН2ОН СН2ОН

Н О ОРО3Н2 Н О О – УДФ

Н +УТФ - Пирофосфат Н

ОН Н нуклеотидил- ОН Н

ОН Н трансфераза ОН

Н ОН Н ОН Н

Глюко-1-фосфат УДФ-глюкоза

А уже нуклеозиддифосфат сахара участвуют в реакциях 2-х типов:

а) Синтез олиго- и поли- сахаридов:

(Глюкоза)n+ УДФ - глюкоза (Глюкоза)n+1+ УДФ

в) Взаимные превращения простых сахаров:

УДФ – галактоза УДФ- глюкоза.

У альдоз концевые группировки могут окисляться до карбоксильной группы (-СООН). При этом возможны три различных производных альдоз (на примере глюкозы):

СООН С = О СООН

Н

Н – С – ОН Н – С – ОН Н – С – ОН

           
     


НО – С – Н НО – С – Н НО – С – Н

 

Н – С – ОН Н – С – Н Н – С – ОН

 

Н – С – ОН Н – С – ОН Н – С – ОН

 

СН2ОН СООН СООН

Глюконовая кислота Глюкуроновая кислота Сахарная кислота

(альдоновые кислоты) (уроновые кислоты) (альдаровые кислоты)

 

 

Уроновые кислоты в тканях есть и в свободном состоянии и в составе олигосахаридов. Осуществляют детоксикационную функцию, соединяясь с токсическими веществами, образуют менее токсичные и выводятся с мочой. Глюкуроновая кислота является предшественницей витамина С (это происходит в растениях и большинстве организмов позвоночных, за исключением приматов, в т.ч. и человека, и морских свинок). Поэтому витамин С обязательно должен поступать с пищей. При дефиците - цинга, ослабление антиоксидантной защиты и т.д.

Моносахариды могут восстанавливаться до многоатомных спиртов и дезок-сисахаров. Для образования многоатомных спиртов в качестве доноров протонов и электронов используются НАДН и НАДФН и соответствующие дигидрогеназы.

а) Многоатомные спирты:

СН2ОН СН2ОН СН2ОН СН2ОН

       
   


Н – С – ОН Н – С – ОН Н – С – ОН Н – С – ОН

 

СН2ОН Н – С – ОН НО – С – Н НО – С – Н

 

Н – С – ОН Н – С – ОН НО – С – Н

 

СН2ОН Н – С – ОН Н – С – ОН

СН2ОН СН2ОН

Глицерин D-рибит D-глюцит (сорбит) D-галактит (дульцит)

(входит в (компонент (используется в пи- (образование катаракты

рибофлавина щевой промышлен- связывают с на-

ности для придания коплением этого

сладкого вкуса, вы- вещества в

сокое содержание хрусталике)

в сперме)

б) Дезоксисахара

С = О С = О

Н Н

Н – С – Н НО – С – Н

 

Н – С – ОН Н – С – ОН L-6-дезоксигалактоза

 

Н – С – Н Н – С – ОН

СН2ОН НО – С - Н

|

СН3

D-дезоксирибаза L-фукоза (основной углеводный компонент

(входит в состав ДНК) гликопротеидов)

Гликозиды:

Моносахара способны образовывать глюкозидную связь типа С-О-R. Чаще всего гликозидная связь образуется за счет спиртовой группы (-ОН) у первого атома углерода, хотя при более жестких условиях гликозидную связь могут образовывать и другие группы (- ОН). Например:

 

 

СН2ОН СН2ОН

Н О Н Н О Н

Н +СН3ОН Н

ОН Н - Н2О ОН Н

ОН ОН ОН

Н ОН Н ОН О - СН3

То-есть, по сути, это реакция двух спиртов, образующих простой эфир R – O – R. С помощью гликозидной связи моносахариды могут соединяться между собой:

СН2ОН СН2ОН

Н О Н Н О

Н Н Н

ОН Н _О__

ОН ОН Н ОН

Н ОН

Н ОН

1,4-а-гликозидная связь

СН2ОН СН2

Н О Н О

Н О Н Н Н

ОН Н

ОН ОН ОН Н ОН

Н ОН

Н ОН

1,6-b-гликозидная связь

В природе встречаются все виды гликозидных связей a1,1; a1,2; a1,3 и т. д., но при этом каждый конкретный олиго- или полисахарид содержит определенный вид гликозидных связей между полимерами. Гликозидных соединений в природе очень много, особенно среди растений. Некоторые из них имеют фармацевтическое значение, например, дегитоксин – мощный стимулятор миокарда. Некоторые антибиотики являются гликозидами, например. эритромицин, стрептомицин, пуромицин. С-N-гликозидную связь содержат и нуклеозиды.

Аминосахара: Иногда спиртовая группа (-ОН) в моносахаридах (чаще всего во втором положении)меняется на группу (-NH2) или ацетамидогруппу группу (-NH-С-СН3 ), в том случае получаются соответственно аминосахара или N – ацетиламиносахара

СН2ОН СН2ОН

ОН О Н Н О Н

Н Н

ОН Н ОН Н

Н ОН ОН ОН

Н NН2 Н NН – С - СН3

||

О

a-D-галактозалин N – ацетилглюкозамин

(входит в состав полисахаров (предшественник сиаловой кислоты)

соединительной ткани)

Нейраминовая и сиаловая кислота:

И одна и другая кислота имеют 9 углеродных атомов. Синтезируются из фосфоенолпирувата или из ПВК) и маннозамина или N-ацетилманнозамина соответственно. Это кислые сахара, входят в состав ганглиозидов (сфингозинсодержащих липидов)

 

СООН СООН

       
   
 


 

С = О С = О

СН2

СН2

Н – С – ОН O Н – С – ОН

| || |

NH2 – C – H Н3С – С - N – C – H

| |

HO – C – H HO – C – H

| |

H – C – OH H – C – OH

| |

H – C – OH H – C – OH

| |

H – C – OH CH2ОН

|

CH2ОН Сиаловая кислота

(N-ацетилнейраминовая кислота)

Олигосахариды.

К олисахаризам относят сахара, состоящие из 2-х, 3-х, 4-х и более остатков моносахаров. В составе тканей встречается лактоза (молочный сахар – в грудном молоке его у 7%). Это смешанный олисахарид (т.е. состоит из разных остатков моносахаров), точнее дисахарид и состоит из остатков глюкозы и галактозы, соединённых a-глюкозной связью:

СН2ОН СН2ОН

       
   
 


ОН О Н О Н

Н О

ОН Н ОН Н

Н Н ОН

Н ОН Н ОН

a-галактоза b-галактоза

Лактоза

Смешанные олисахариды есть в свободном виде (в грудном молоке) и есть связанные с белками и липидами (в тканях). В их состав входят глюкоза, галактоза, манноза, аминосахара, их ацетильные производные, нейраминовая и сиаловая кислоты, L-фукоза – при этом получаются три-, тетра,- пентасахара и т. д. Наличие олигосахаризных группировок в крови и тканях определяет групповую специфичность (группы крови), они обуславливают специфические межклеточные взаимодействия. В растениях встречаются мальтоза,сахароза и другие олигосахариды.

К смешанным олисахарам относится и бифидусфактор, он включает в себя галактозу, L-фукозу, N-ацетилглюкозамин, глюкозу и нейраминовую кислоту. Этот фактор является важнейщим субстратом для бродильной микрофлоры.

Полисахариды.

Все полисахариды можно разделить на:

1. Гомополисахариды (все остатки входящих в состав мономеров – идентичны). Единственный представитель в животных тканях – гликоген. Гликоген служит запасным энергетическим материалом клетки. Состоит из остатков глюкозы,соединенных между собой a –1,4 –глюкозидной связью. Все вместе осуществляется с помощью a –1,6 – гликозидной связи.

 

СН2ОН СН2ОН

Н Н О Н Н О Н

ОН Н О Н a –1,6 – гликозидная связь

О__ ОН Н О

 

Н ОН НОН2С Н ОН СН2ОН

Н О Н Н Н О Н Н О Н

a –1,4 – гликозидная Н О ОН Н О Н

связь __О ОН Н ОН Н __О

 

Н ОН Н ОН Н ОН

Ветвление происходит через 8-10 остатков глюкозы в основной цепи. Ветвление цепи гликогена повышает его растворимость, а также повышает скорость синтеза и распада гликогена, т. к. увеличивается площадь соприкосновения гликогена с ферментами (гликоген-синтазой и гликоген фосфорилазой соответственно).

Гликоген присутствует во всех клетках, но больше всего его в печени (5 – 10% от общей массы) и в мышцах (1 – 2 %). Молекулярная масса гликогена до нескольких миллионов. Является депо глюкозы в организме.

2. Гетерополисахариды (состоят из различных мономеров). Гетерополисахариды практически всегда находятся в комплексе с тем или иным количеством белка (от 1 до 5 %), также комплексы называются протеогликанами. Сахаридная же часть такого комплекса называется мукополисахаридами или гликозаминогликанами. Протеогликанов много в соединительной ткани (до 33%), особенно в рыхлой соединительной ткани (межклеточном веществе), сухожилиях, связках, коже, роговице, стекловидном теле, сердечных клапанах, т. д.

Различают следующие гликозаминогликаны:

Г иалуроновая кислота – это основной компонент межклеточного вещества, много в синовиальной жидкости (смазка суставов), в стекловидном теле, пупочном канатике. Состоит из дисахаридных повторяющихся звеньев, которые представлены D-глюкуроновой кислотой и N-ацетилглюкозамином, соединёнными b-1,3-глюкозидными связями. Дисахариды в цепи соединяются между собой b-1,4- глюкозидными связями. Мол? масса гиалуроновой кислоты 10 6– 107. Очень высокая гидрофильность: 1г связывает до 500 мл Н2О. Участвует в регуляции сосудисто-тканевой проницаемости, в регуляции водного обмена, придаёт объём соединительной ткани.

Хондроитинсульфаты - по строению похожи на гиалуроновую кислоту, только вместо N-ацетилглюкозамина, содержат N-ацетилгалактозамин, в котором либо четвёртый, либо пятый углеродный атом сульфированы. Степень и место сульфирования определяют принадлежность хондраитинсульфата к определённому типу (А, В, С). Иногда хондрантинсульфат В называют дерматансульфат (содержится в коже, связках, роговых оболочках и т.д.). По строению он немного отличается от А и С, т.к. содержит не глюкуроновую кислоту, а идуроновую (изомер глюкуроновый). Молярная масса хондраитинсульфатов от 50 000 до 200 000 ед.:

СООН Н

Н О ОН Н О ОН

Н СООН

ОН Н ОН Н

ОН Н ОН Н

Н ОН Н ОН

b -D-глюкуроновая кислота b- L-идуроновая кислота

Кератансульфаты – содержат в своём составе N-ацетилглюкозамин + галактозу +H34 (присоединяется к N-ацетилгалактозамину). С возрастом содержание кератансульфатов возрастает (в межпозвоночных хрящах, в роговице и т. д.).

Гепарин состоит из сульфатированной глюкуроновой кислоты (во втором положении) и дисульфатированного глюкозамина (во втором и шестом положениях). Молекулярная масса: 15 – 17 000 ед. Содержится в крови, печени (тучные клетки). Обладает сильным антикоагулирующим действием, повышает активность НК, некоторых ферментов (протеиназ, гликозидаз и т.д.).

Переваривание углеводов.

Это процесс гидролитического расщепления поли- и олигосахаридов. Переваривание начинается в ротовой полости. В слюне содержится фермент, расщепляющий крахмал (a-амилаза), расщепляет a-1,4-гликозидные связи внутри молекулы (но не концевые), при этом образуются декстрины, небольшое количество мальтозы и изомальтозы. В желудке углеводы не перевариваются, т.к. рН – кислая. Полное переваривание происходит в тонком кишечнике. Поджелудочная железа вырабатывает a, b - амилазы и выделяет их в просвет кишечника. Клетки слизистой кишечника тоже продуцируют ряд ферментов, переваривающих олигосахара. Одна группа ферментов расщепляет a-гликозидные связи (мальтаза: a-1,4- гликозидные связи, изомальтаза-a-1,6; сахараза- сахарозу). Вторая группа расщепляет b-гликозидные связи (лактаза, b-галактозидаза, гетерогалактозидаза – расщепляет смешанные олигосахариды). Под действием указанных ферментов происходит расщепление до моносахаров. Переваривание чаще идёт пристеночное (у поверхности клеток). Не перевариваются: клетчатка (нет фермента), но она нужна для перистальтики кишечника, пектозаны (полисахара, состоящие из пентоз). При переваривании больше всего образуется глюкозы. Всасывание осуществляется с помощью особых переносчиков, при этом характерна специфичность, затрачивается энергия (повышено потребление кислорода, расходуется АТФ). Глюкоза и галакт



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-10-09 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: