Сварка в среде защитных газов. Сущность процесса и область применения.




При сварке в защитном газе электрод, зона дуги и свароч­ная ванна защищены струей защитного газа.

В качестве защитных газов применяют инертные газы (аргон и гелий) и активные газы (углекислый газ, азот, водород и др.), иногда — смеси двух газов или более. Аргонодуговой сваркой можно сваривать неплавящимся и плавя­щимся электродами. Сварку неплавящимся электродом применяют, как правило, при соединении металла толщиной 0,5—6 мм; плавя­щимся электродов — от 0,5 мм и более. В аргоне неплавящимся вольфрамовым электродом (Тгп = 3370 С) можно сваривать с рас­плавлением только основного металла (толщиной до 3 мм), а при необходимости получения усиления шва или заполнения разделки кромок (толщина более 3 мм) и присадочного материала (прутка или проволоки).

Сварка в атмосфере защитных газов в зависимости от степени механизации процессов подачи присадочной или сварочной проволоки и перемещения сварочной горелки может быть ручной, полу­автоматической и автоматической.

По сравнению с ручной сваркой покрытыми электродами и автоматической под флюсом сварка в защитных газах имеет следующие преимущества: высокую степень защиты расплавленного металла от воздействия воздуха; отсутствие на поверхности шва при приме­нении аргона оксидов и шлаковых включений; возможность ведения процесса во всех пространственных положениях; возможность визу­ального наблюдения за процессом формирования шва и его регули­рования; более высокую производительность процесса, чем при руч­ной дуговой сварке; относительно низкую стоимость сварки в угле­кислом газе.

Области применения сварки в защитных газах охватывают широ­кий круг материалов и изделий (узлы летательных аппаратов, эле­менты атомных установок, корпуса и трубопроводы химических аппаратов и т. п.). Аргонодуговую сварку применяют для цветных (алюминия, магния, меди) и тугоплавких (титана, ниобия, ванадия, циркония) металлов и их сплавов, а также легированных и высоко­легированных сталей.

 

Билет №13

  1. УЛЬТРАЗВУКОВАЯ СВАРКА пластмасс. Сущность процесса. Область применения.

Ультразвуковая сварка относится к процессам, в которых используют давление, нагрев и взаимное трение свариваемых по­верхностей. Силы трения возникают в результате действия на за­готовки, сжатые осевой силой механических колебаний с ультра­звуковой частотой. Для получения механических колебаний высокой частоты используют магнитострикцнонный эффект, основанный на изменении размеров некоторых материалов под действием перемен­ного магнитного поля. Изменения размеров мапштострикниониых материалов очень незначительны, поэтому для увеличения амплитуды и концентрации энергии колебаний и для передачи механиче­ских колебаний к месту сварки используют волноводы, в боль­шинстве случаев сужающейся формы.

При ультразвуковой сварке свариваемые заготовки размещают на опоре. Наконечник рабочего инструмента соеди­нен с магнитострикциониым преобразователем через трансформа­тор продольных упругих колебании, представляющих собой вместе С рабочим инструментом волновод. Нормальная сжимающая сила Р создается моментом М в узле колеба­ний. В результате ультразвуковых колебаний в тонких слоях контакти­рующих поверхностей создаются сдвиговые деформации, разруша­ющие поверхностные пленки.

Тонкие поверхностные слои металла нагреваются, металл в этих слоях немного размягчается и под действием сжимающего усилия пластически деформируется. При сближении поверхностей на рас­стояние действия межатомных сил между ними возникает прочная связь. Сравнительно небольшое тепловое воздействие на сваривае­мые материалы обеспечивает минимальное изменение их структуры, механических и других свойств.

Ультразвуковой сваркой можно получать точечные и шовные соединения внахлестк, а также соединения по замкнутому контуру. При сварке по контуру, например, по кольцу, в волновод вставляют конический штифт, имеющий форму трубки. При равномерном под-жатии заготовок к свариваемому штифту получают герметичное со­единение по всему контуру. Ультразвуковой сваркой мо­жно сваривать заготовки толщиной до 1 мм и ультратонкие заготовки толщиной до 0,001 мм, а также приваривать тонкие листы и фольгу к заготовкам неограниченной толщины. Снижение требований к ка­честву свариваемых[поверхностей позволяет сваривать плакированные и оксидированные поверхности и металлические изделия, покрытые различными изоляционными пленками. Этим способом можно сва­ривать металлы в однородных и разнородных сочетаниях, например алюминий с медью, медь со сталью и т. п. Ультразвуковым способом сваривают и пластмассы, однако в отличие от сварки металлов к заготовкам подводятся поперечные ультразвуковые колеба­ния.

Ультразвуковую сварку применяют в приборостроении, радио­электронике, авиационной промышленности и других отраслях.

 

 

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 15

 

1. Влияние углерода и постоянных примесей на свойства сталей.

 

На свойства железоуглеродистых сплавов влияет наличие в них постоянных примесей (вредных — серы, фосфора, кислорода, азота, водорода; полезных — кремния, марганца и др). Эти примеси могут попадать в сплав из природных соединений (руд), например, сера и фосфор; из металлического лома — хром, никель и др.; в про­цессе раскисления — кремний и марганец.

Влияние углерода. Углерод в железоуглеродистом сплаве нахо­дится главным образом в связанном состоянии в виде цементита. В свободном состоянии в виде графита он содержится в чугунах. С увеличением содержания углерода возрастает твердость, прочность и уменьшается пластичность.

Влияние серы. Сера является вредной примесью. Она образует легкоплавкую эвтектику. При кристаллизации сплава легкоплавкая эвтектика располагается по границам зерен и при повторном нагреве расплавляется, в результате чего нарушается связь между зернами, что приводит к образованию трещин и надры­вов. Это явление носит название красноломкости. Допускается со­держание серы до 0,06 %.

Влияние фосфора. Фосфор растворяется в у- и а-железе, иска­жает кристаллическую решетку и ухудшает пластические свойства сплава Фосфор вызывает явление хладноломкости. Фосфор — вред­ная примесь, и его содержание в сталях не должно превышать 0,08%. В чугуне допускается до 0,3 % Р.

Влияние азота, кислорода и водорода. Эти элементы присут­ствуют в сплавах или в составе хрупких неметаллических включений, например оксидов FeO, SiO2, A12O3, нитридов Fe4N, или в свободном состоянии, при этом они располагаются в дефектных местах в виде молекулярного и атомарного газов. Неметаллические включения служат концентраторами напряжений и могут понизить механические свойства (прочность, пластичность).

Водород поглощается сталью в атомарном состоянии. При охла­ждении сплава растворимость водорода уменьшается, и в молеку­лярной форме он накапливается в микропорах под высоким давле­нием. Таким образом, водород может стать причиной образования внутренних надрывов в металле (флокенов).

Влияние кремния и марганца. Кремний и марганец попадают в железоуглеродистый сплав при его выплавке в процессе раскисления. Оксиды кремния (SiO.) связывают закись железа (FeO) в силикаты (FeO SiO2) и удаляются вместе со шлаками.

Кремний, растворяясь в феррите, повышает предел текучести и уменьшает склонность к хладноломкости.

Марганец образует твердый раствор с железом и немного повы­шает твердость и прочность феррита. В присутствии серы он частично связывается с серой в сернистый марганец и переходит в шлак. При содержании марганца более 1,5 % снижаются пластические свойства стали. В сталях содержится обычно не более 0,4 % Si и 0,8 % Мп.

 

Билет №16

1. Классификация легированных сталей, их маркировка. Влияние легирующих элементов на свойства сталей.

 

Легированные стали могут быть классифицированы по четырем признакам: по равновесной структуре, по структуре после охлаждения на воздухе, по составу и по назначению.

Классификация по равновесной структуре

1.Доэвтектоидные стали, имеющие в структуре избыточный феррит.

2. Эвтектоидные стали имеющие перлитную структуру.

3. Заэвтектоидные стали имеющие в структуре избыточные (вторичные) карбиды.

4. Ледебуритные стали имеющие в структуре первичные карбиды, выделившиеся из жидкой стали. В литом виде избыточные карбиды совместно с аустенитом образуют эвтектику- ледебурит, который при ковке или прокатке разбивается на обособленные карбиды и аустенит.

Классификация по структуре после охлаждения на воздухе

Учитывая структуру, получаемую после охлаждения на спокойном воздухе можно выделить три основных класса сталей:

1-перлитный, характеризуются относительно малым содержанием легирующих элементов.

2- мартенситный, более значительное содержание легирующих элементов.

3-аустенитный, высокое содержание легирующих элементов.

Классификация по составу

Как никелевые, хромистые, хромоникелевые, хромоникель-молибденовые и т.д. Классификационным признаком служит наличие в стали тех или иных легирующих элементов.

Классификация по назначению.

В зависимости от назначения стали можно объединить в сле­дующие группы.

Конструкционная сталь, идущая на изготовление деталей машин. Конструкционная (машиноподелочная) сталь, как правило, у потребителя подвергается термической обработ­ке. Поэтому конструкционные стали подразделяют на цементу­емые (подвергаемые цементации) и улучшаемые (подвергаемые закалке и отпуску, практически не обязательно высокому).

Близкие по составу к конструкционным сталям, но не пред­назначаемые для термической обработки у потребителя, объе­диняются г-, группу так называемых строительных сталей (они в основном применяются в строительстве). Часто их называют низколегированными.

Инструментальная сталь, идущая на изготовление режущего, измерительного, штампового и прочего инструмента. Инструментальные стали условно подразделяют на следующие четыре категории: углеродистые, легированные, штамповые и быстрорежущие.

Стали и сплавы с особыми свойствами. К ним относятся стали, обладающие каким-нибудь резко выраженным свойством: нержавеющие, жаропрочные и теплоустойчивые, из­носоустойчивые, с особенностями теплового расширения, с осо­быми магнитными и электрическими свойствами и т.д.

 

МАРКИРОВКА ЛЕГИРОВАННЫХ СТАЛЕЙ

Для обозначения марок стали разработана система, приня­тая в ГОСТах. Обозначения состоят из небольшого числа цифр и букв, указывающих на примерный состав стали.

Каждый легирующий элемент обозначается буквой: Н — ни­кель; X — хром; К — кобальт; М — молибден; Г — марганец; Д — медь; Р — бор; Б — ниобий; Ц — цирконий; С—кремний; П — фосфор; Ч—редкоземельные металлы; В — вольфрам; Т — титан; А—азот; Ф—ванадий; Ю — алюминий.

Первые цифры в обозначении показывают среднее содержа­ние углерода в сотых долях процента (у высокоуглеродистых инструментальных сталях в десятых долях процента). Цифры, идущие после буквы, указывают на примерное содержание дан­ного легирующего элемента (при содержании элемента менее 1% цифра отсутствует; при содержании около 1% —цифра 1 и около 2% — цифра 2 и т. д.).высококачест­венной стали, в конце обозначения марки ставят букву А.*

Влияние легпрущпх элементов на кинетику распада аустенита

Влияние же легирующих элементов на кинетику превращения аустенита очень велико.

Элементы, которые только растворяются в феррите или цементите, не образуя специальных карбидов, оказывают лишь количественное влияние на процессы превращения. Они или ускоряют превращение (к таким элементам относится только кобальт), или замедляют его (большинство элементов, в том числе марганец, никель, медь и др.).

Карбидообразующие элементы вносят не только количе­ственные, но и качественные изменения в кинетику изотермиче­ского превращения. Так, легирующие элементы, образующие растворимые в аустените карбиды, при разных температурах по-разному влияют на скорость распада аустенита: 700—500° С (образование перлита)—замедляют превращение; 500—400° С— весьма значительно замедляют превращение; 400—300э С (об­разование бейнита) — ускоряет превращение.

Таким образом, в сталях, легированных карбидообразующими элементами (хром, молибден, вольфрам), наблюдаются два максимума скорости изотермического распада аустенита, раз­деленных областью высокой устойчивости переохлажденного аустенита. Изотермический распад аустенита имеет два япно выраженных интервала превращений — превращение в пластинчатые (перлитное превращение) и превращение в игольчатые (беинитные превращения) структуры.

 

 

Легирующие элементы не влияют на кинетику мартенситно­го превращения, которая, по-видимому, похожа во всех сталях. Их влияние сказывается здесь исключительно на положении температурного интервала мартенситного превращения, а это в свою очередь отражается и на количестве остаточного аусте­нита, которое фиксируется в закаленной стали. Некоторые эле­менты повышают мартеиситную точку и уменьшают количество остаточного аустенита (алюминий, кобальт), другие не влияют на нее (кремний), но большинство снижает мартенситную точку и увеличивает количество остаточного аустенита

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-07-22 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: