Принцип Даламбера (метод кинетостатики)




30-31

Динамика материальной точки (м.т.)определяется двумя законами Ньютона: ƩFi=R=ma

ƩFi – сумма сил действующая на м.т. со стороны какого либо объекта. Выполняется принцип супер позиции сил => Сумма сил считается одной силой – равнодействующей. R является функцией от координаты точки в системе отчета, скорости и времени.

Дифференциальные уравнения движения материальной точки: , в проекции на декартовы оси коорд.: , на оси естественного трехгранника: ; ; ( – проекция ускорения на бинормаль), т.е. ( – радиус кривизны траектории в текущей точке). В случае плоского движения точки в полярных координатах: .

Две основные задачи динамики для свободной точки:

При решении этих задач исходными являются дифференциальные уравнения движения точки, записанные в общем виде в декартовых или естественных координатах.

Первая задача динамики (обратная)– зная закон движения точки, определить действующую на нее силу;

Вторая задача динамики (основная) (прямая) – зная действующие на точку силы, определить закон движения точки.

– дифференциальное ур-ие прямолинейного движения точки. Дважды интегрируя его, находим общее решение .

Постоянные интегрирования C 1, C 2 ищут из начальных условий: t =0, x = x 0, =Vx=V0, x=f(t,x 0, V 0) – частное решение – закон движения точки.

Решаются обе эти задачи с помощью уравнений, вы­ражающих основной закон динамики, так как эти уравнения связывают ускорение т.е. величину, характеризующую движение точки, и действующие на нее силы.

Несвободной материальной точкой называется точка, свобода движения которой ограничена.

Тела, ограничивающие свободу движения точки, называются связями.

Пусть связь представляет собой поверхность какого-либо тела, по которой движется точка. Тогда координаты точки должны удовлетворять уравнению этой поверхности, которое называется уравнением связи.

Если точка вынуждена двигаться по некоторой линии, то уравнениями связи являются уравнения этой лини.

,

Таким образом, движение несвободной материальной точки зависит не только от приложенных к ней активных сил и начальных условий, но так же от имеющихся связей. При этом значения начальных параметров должны удовлетворять уравнениям связей.

Связи бывают двухсторонние или удерживающие и односторонние или неудерживающие.

Связь называется двухсторонней если, накладываемые ею на координаты точки ограничения выражаются в форме равенств, определяющих кривые или поверхности в пространстве на которых должна находится точка.

математического маятника (материальной точки, подвешенной на нерастяжимой нити и движущейся под действием силы тяжести) имеем дифф. уравнения движения:

, где L – длина нити. Если , то математический маятник будет двигаться так же, как и физический (период колебаний совпадает). Величина L назыв-ся приведенной длиной физического маятника. Точка К, отстоящая от оси подвеса на расстоянии ОК=L, назыв-ся центром качаний физич. маятника. Если ось подвеса взять в точке К, то точка О будет центром качаний и наоборот – свойство взаимности. Расстояние ОК всегда >ОС, т.е. центр качаний всегда расположен ниже центра масс. T=2π√(L/g)

Гармонические колебания — колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид.

Гармоническими являются колебания,которые происходят под действием силы,пропорциональной смещению колеблящейся точки и направленной противоположно этому смещению.

или

Затухающие колебания(в среде с сопротивлением) при действии сила сопротивления, пропорциональная скорости (вязкое трение). , обозначив , получаем:

характеристическое уравнение: , (z тоже что и x). его корни: . а) При n<k корни мнимые, отсюда общее решение дифф.ур-ия имеет вид: , обозначив , имеем . Множитель показывает, что колебания затухающие. График заключен между двумя симметричными относительно оси t кривыми . Из начальных условий: , ; частота затухающих колебаний: ; период:

 

32.

основной закон динамики поступательного движения - Второй закон НьютонаF=dp/dt, p=m*v

если материальная точка находится в состоянии относительного покоя, геометрическая сумма действующих на нее сил и переносной силы инерции равна нулю. Следует отметить, что выполнения условия не означает, что после сообщения точке начальной скорости она будет двигаться равномерно и прямолинейно относительно подвижной системы, как это имеет место в инерциальной системе отсчета.

Сила инерции материальной точки представляет собой противодействие материальной точки изменению ее скорости и приложена к телу, сооб­щающему этой точке ускорение. Сила инерции равна по модулю произ­ведению массы материальной точки на модуль ее ускорения и направле­на в сторону, противоположную ускорению . При неравномерном криволинейном движении точки силу инерции, представленной в виде касательной (), и нормальной () силами инерции. Эти силы направлены противоположно касательному и нормальному ускорению , , , . В случае равномерного движения точки по кривой . В случае равномерного движения точки по прямой . Если точка принадлежит твердому телу, вращающемуся вокруг неподвижной оси, то модуль ее вращательной и центробежной сил инерции определяется по формулам: , , где , — угловое ускорение и угловая скорость тела.

Принцип Даламбера (метод кинетостатики)

В каждый момент движения сумма активных сил, реакций связей и сил инерции равна нулю принцип Даламбера для материальной точки.

– внешняя сила, – внутренняя сила. Сила инерции: , знак (–) показывает, что сила инерции направлена в противоположную сторону ускорению.

Для системы добавляется уравнение моментов: .

Обозначают: главный вектор сил инерции, главный момент сил инерции. Учитывая, что геометрическая сумма внутренних сил и сумма их моментов равна нулю , , получаем: , — уравнения кинетостатики. Принцип Даламбера для системы – если в любой момент времени к каждой точке системы приложить, кроме реально действующих сил, соответствующие силы инерции, то полученная система сил будет находиться в равновесии и к ней можно применять уравнения статики. Это упрощает процесс решения задач.

Главный вектор сил инерции равен произведению массы тела на ускорение его центра масс и направлен противоположно этому ускорению.

Главный момент сил инерции зависит от вида движения: при поступательном движении ; при плоском , при вращении вокруг оси z, проходящей через центр масс тела, .

Механическая система – совокупность взаимосвязанных между собой тел или материальных точек. Твердое тело можно рассматривать как механическую систему, положения и расстояние между точками которой не изменяются.

Центр масс (центр инерции) – геометрическая точка, радиус-вектор которой определяется равенством: , где – радиусы-векторы точек, образующих систему. Координаты центра масс: и т.д.

Материальная система – совокупность материальных точек, движение которых взаимосвязаны. Масса системы = сумме масс всех точек (или тел), образующих систему: .

Момент инерции тела (системы) относительно оси Оz: . При непрерывном распределении масс (тело) сумма переходит в интеграл: , , – относительно координатных осей. , где радиус инерции тела – расстояние от оси до точки в которой нужно сосредоточить всего тела, чтобы ее момент инерции равнялся моменту инерции тела. Момент инерции относительно оси (осевой момент инерции) всегда >0.

Теорема Гюйгенса-Штейнера момент инерции тела относительно произвольной оси равен моменту инерции относительно оси ей параллельной и проходящей через центр масс тела плюс произведение массы тела на квадрат расстояния между осями:

. Наименьший момент инерции будет относительно той оси, которая проходит через центр масс.

Материальная точка массы m На расстоянии r от точки, неподвижная
Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра
Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра
Полый толстостенный цилиндр массы m с внешним радиусом r2 и внутренним радиусом r1 Ось цилиндра
Сплошной цилиндр длины l, радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс
Полый тонкостенный цилиндр (кольцо) длины l, радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец
Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы
Шар радиуса r и массы m Ось проходит через центр шара

 

Билет 34

1. Механической системой материальных точек или тел называется такая их совокупность, в которой положение или движение каждой точки (или тела) зависит от положения и движения всех остальных.

 

2. Движение системы, кроме действующих сил, зависит также от её суммарной массы и распределения масс. Масса системы равна арифметической сумме масс всех точек или тел, образующих систему

.

В однородном поле тяжести, для которого , вес любой частицы тела будет пропорционален ее массе. Поэтому о распределении масс в теле можно судить по положению его центра тяжести. Преобразуем формулы, определяющие координаты центра тяжести:

, , . (1)

В полученные равенства входят только массы материальных точек (частиц), образующих тело, и координаты этих точек. Следовательно, положение точки С (x C, y C, z C) действительно харак­теризует распределение масс в теле или в любой механической си­стеме, если под , понимать соответственно массы и координаты точек этой системы.

Геометрическая точка С, координаты которой определяются указанными формулами, называется центром масс или центром инерции системы.

Положение центра масс определяется его радиус-вектором

,

где - радиус-векторы точек, образующих систему.

 

3. Моментом инерции тела (системы) относительно данной оси Oz (или осевым моментом инерции) называется скалярная величина, равная сумме произведений масс всех точек тела (системы) на квадраты их расстояний от этой оси

Из определения следует, что момент инерции тела (или системы) относительно любой оси является величиной положительной и не равной нулю.

Заметим также, что момент инерции тела – это геометрическая характеристика тела, не зависящая отего движения.

Осевой момент инерции играет при вращательном движении тела такую же роль, какую масса при поступательном, т.е. что осевой момент инерции является ме­рой инертности тела при вра­щательном движении.

Согласно формуле момент инерции тела равен сумме момен­тов инерции всех его частей от­носительно той же оси. Для од­ной материальной точки, нахо­дящейся на расстоянии h от оси, .

Часто в ходе расчетов пользуются понятием радиуса инерции. Радиусом инерции тела относительно оси Оz называется линейная величина , определяемая равенством

,

где М - масса тела.

 

4. Теорема Гюйгенса.

Моменты инерции данного тела относи­тельно разных осей будут разными. Покажем, как зная момент инерции относительно какой-нибудь одной оси, проведен­ной в теле, найти момент инерции от­носительно любой другой оси, ей па­раллельной.

5.

6. Рис.35

 

Проведем через центр масс С тела произвольные оси Cx'y'z', а через лю­бую точку О на оси Сх' - оси Oxyz, такие, что Оy ½½ Сy', Oz ½½ Cz' (рис. 35). Расстояние между осями Cz' и Оz обозначим через d. Тогда

но, как видно из рисунка, для любой точки тела или , а . Подставляя эти значения , в выражение для и вынося общие множители d 2 и 2d за скобки, получим

В правой части равенства первая сумма равна Icz', а вторая - массе тела М. Найдем значение третьей суммы. На основании фор­мул для координат центра масс .Так как в на­шем случае точка С является началом координат, то x C = 0 и, сле­довательно, . Окончательно получаем:

Формула выражает следующую теорему Гюйгенса:

Момент инерции тела относительно данной оси равен моменту инерции относительно оси, ей параллельной, проходящей через центр масс тела, сложенному с произведением массы всего тела на квадрат расстояния между осями.

Билет 35

 

1. Принцип Даламбера.

Все методы решения задач динамики, которые мы до сих пор рассматривали, основываются на уравнениях, вытекающих или непосредственно из законов Ньютона, или же из общих теорем, являющихся следствиями этих законов. Однако, этот путь не является единственным. Оказывается, что уравнения движения или условия равновесия механической системы можно получить, положив в основу вместо законов Ньютона другие общие положения, называемые принципами механики. В ряде случаев применение этих принципов позволяет, как мы увидим, найти более эффективные методы решения соответствующих задач. В этой главе будет рассмотрен один из общих принципов механики, называемый принципом Даламбера.

Пусть мы имеем систему, состоящих из n материальных точек. Выделим какую-нибудь из точек системы с массой . Под действием приложенных к ней внешних и внутренних сил и (в которые входят и активные силы, и реакции связи) точка получает по отношению к инерционной системе отсчета некоторое ускорение .

Введем в рассмотрение величину

,

имеющую размерность силы. Векторную величину, равную по модулю произведению массы точки на ее ускорение и направленную противоположно этому ускорению, называют силой инерции точки(иногда даламберовой силой инерции).

Тогда оказывается, что движение точки обладает следующим общим свойством: если в каждый момент времени к фактически действующим на точку силам и прибавить силу инерции , то полученная система сил будет уравновешенной, т.е. будет

.

Это выражение выражает принцип Даламбера для одной материальной точки. Нетрудно убедиться, что оно эквивалентно второму закону Ньютона и наоборот. В самом деле, второй закон Ньютона для рассматриваемой точки дает . Перенося здесь член в правую часть равенства и придем к последнему соотношению.

Повторяя проделанные высшее рассуждения по отношению к каждой из точек системы, придем к следующему результату, выражающему принцип Даламбера для системы: если в любой момент времени к каждой из точек системы, кроме фактически действующих на ней внешних и внутренних сил, приложить соответствующие силы инерции, то полученная система сил будет находиться в равновесии и к ней можно будет применять все уравнения статики.

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия; что делает единообразный подход к решению задач и обычно намного упрощает соответствующие расчёты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики.

Применяя принцип Даламбера, следует иметь в виду, что на точку механической системы, движение которой изучается, действуют только внешние и внутренние силы и , возникающие в результате взаимодействия точек системы друг с другом и с телами, не входящими в систему; под действием этих сил точки системы и движутся с соответствующими ускорениями . Силы же инерции, о которых говорится в принципе Даламбера, на движущиеся точки не действуют (иначе, эти точки находились бы в покое или двигались без ускорений и тогда не было бы и самих сил инерции). Введение сил инерции - это лишь приём, позволяющий составлять уравнения динамики с помощью более простых методов статики.

Из статики известно, что геометрическая сумма сил, находящихся в равновесии, и сумма их моментов относительно любого центра О равны нулю, причём по принципу отвердевания это справедливо для сил, действующих не только на твёрдое тело, но и на любую изменяемую систе6му. Тогда на основании принципа Даламбера должно быть:

Введём обозначения:

Величины и представляют собой главный вектор и главный момент относительно центра О системы сил инерции. В результате, учитывая, что геометрическая сумма внутренних сил и сумма их моментов равны нулю, получим из равенств:

, (1)

Применение уравнений (1), вытекающих из принципа Даламбера, упрощает процесс решения задач, т.к. эти уравнения не содержат внутренних сил.

В проекциях на оси координат эти равенства дают уравнения, аналогичные соответствующим уравнениям статики. Чтобы пользоваться этими уравнениями при решении задач, надо знать выражение главного вектора и главного момента сил инерций.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: