Сколько генов в человеческом организме?




Содержание

 

Введение ………………………………………………………………………...3

1. Сколько генов в человеческом организме?………………………...……… 5

2. Проект "Геном человека"…………. ……………………………………...…7

3. Результаты проекта "Геном человека"………………………………….….12

Заключение …………………………………………………………………….18

Список литературы………………………………………………………..….. 19

 

 

Введение

"...Но прежде прибери в комнатах, вымой окна, натри пол, выбели кухню, выполи грядки, посади под окнами семь розовых кустов, разбери семь мешков фасоли: белую отбери от коричневой, познай саму себя…"

 

Е.Л. Шварц. "Золушка"

 

Наверное, самым трудным для Золушки в заданиях злой и коварной мачехи было: «Познай саму себя!» Все остальное трудно, но понятно - действия привычные, выдумывать ничего не надо, только поспевай... А что значит: «Познай саму себя»? Узнать, как ты движешься, думаешь или дышишь, когда перебираешь фасоль? А может быть, первый шаг к настоящему пониманию человека - узнать, как он воспроизводит себе подобных?

Когда несколько американских ученых в 1986-1987 годах принялись неслыханно дерзко уговаривать руководителей Министерства энергетики США выделить несколько миллиардов долларов на фантастический проект: узнать строение всех генов человека - это был правильный шаг к познанию самих себя. Узнав строение генов, можно было посягнуть и на то, чтобы вторгнуться реально в понимание процессов мышления и реагирования на стимулы, приходящие из окружающей среды и т.д. Как только проект, названный «Геном человека», был объявлен, начались новые муки: множество людей во всем мире, причем не просто обыватели, а профессора и руководители институтов, стали его резко критиковать, называя его «завиральным», нереальным и попросту глупым. Вложенных средств он не оправдает, усилий потребует столько, что все ученые, забросив остальные дела, справиться с ним не смогут и т. п. Деньги затея поглотит, а толку все равно не будет. Рановато еще к этому приступать, твердили эти знатоки, наука не созрела для решения таких задач, технических возможностей не создано, лучше прекратить с самого начала нелепую выдумку, а деньги пустить на действительно реальные проекты.

Если бы на этом настаивали специалисты по ядерной физике или физической химии, было бы понятно, ведь из-за «Генома человека» приостановили другие дорогие проекты, прежде всего в области физики. Но в хоре протестов выделялись и голоса биологов, особенно из Западной Европы и СССР. Правда, в СССР были и другие ученые, в частности, академик А.А. Баев, которые сразу же постарались включиться в международный проект и извлечь из него максимальную пользу.

Когда проект только начинал свою работу, казалось, что для его завершения понадобится не менее 20 лет. Однако уже в 2000 г. усилиями ученых всего мира геном человека был прочитан. Его можно сравнить с книгой, которая содержит в себе последовательность знаков в 800 раз длиннее, чем Библия, однако смысл большинства «предложений» в тексте книги нам еще непонятен, и его предстоит расшифровывать еще долгие годы. Чем больше текста нашего генома удастся разгадать, тем больше появится возможностей для профилактики и лечения наследственных заболеваний, в том числе и таких, которые затрагивают психическую сферу человека.[2]

Сколько генов в человеческом организме?

Молекулярную основу генома человека составляет молекула ДНК - знаменитая «нить жизни», двуспиральная модель структуры, которой была гениально предсказана и обоснована в работе нобелевских лауреатов Джеймса Уотсона и Фрэнсиса Крика еще в 1953 году. Спираль состоит из 4-х пар оснований (нуклеотидов); двух пуринов (аденин, гуанин) и двух пиримидинов (тимин и цитозин), соединенных между собой через дезоксирибозу и остатки фосфорной кислоты в длинную нить. Две нити соединяются между собой посредством водородных связей своих нуклеотидов, причем так, что аденин всегда соединен с тимином, а гуанин — с цитозином. В дальнейшем оказалось, что именно в чередовании пар оснований в ДНК и заложен генетический код для каждой из 20 аминокислот, причем этот код оказался трехбуквенным, то есть каждой аминокислоте соответствует свои три нуклеотида, свой триплет. Было так же установлено, что в каждой клетке человека длина молекулы ДНК около 1,5–2 м, а число нуклеотидов, составляющих эту уникальную «нить жизни» достигает 3.3 миллиарда. Фрагменты этой нити и составляют то, что называется генами, то есть кодирующими участками генома, определяющими структуру всех белков организма. Естественно, поэтому точное данные о структуре генома человеке, т.е. о первичной последовательности его нуклеотидов, равно как и данные обо всех генах человека давно привлекали и привлекают самое пристальное внимание ученых-биологов.

Как представить себе 3 млрд. оснований зримо? Чтобы воспроизвести информацию, содержащуюся в ДНК единственной клетки, даже самым мелким шрифтом (как в телефонных справочниках), понадобится тысяча 1000-страничных книг! Сколько же всего генов, то есть последовательностей нуклеотидов, кодирующих белки, в ДНК человека? Года три назад полагали, что около 100 тыс., затем решили, что не более 80 тыс. В конце 1998 г. пришли к выводу, что в геноме человека 50–60 тыс. генов. На их долю приходится только 3% общей длины ДНК. Роль остальных 97% пока не ясна.[2]

 

 

Проект «Геном человека»

 

Белки выполняют в организме самые различные функции. В качестве ферментов они служат катализаторами химических реакций; в роли гормонов они, наряду с нервной системой, управляют работой различных органов, передавая химические сигналы. Белки используются в организме и как строительный материал (например, в мышечной ткани), и как транспортные средства (гемоглобин крови переносит кислород).

Размах синтеза белка, происходящего в клетке, огромен. Геном человека (набор последовательностей ДНК, определяющих генетическую индивидуальность человека) содержит порядка 6 биллионов нуклеотидов, из которых сформировано примерно 100 000 генов, чьи Размеры варьируют в пределах от 1000 до 2 миллионов нуклеотидных пар.

Описание всех генов человека и расшифровка соответствующих последовательностей ДНК — основная задача международного исследовательского проекта «Геном Человека», который является самым крупным генетическим проектом в мире. Благодаря усилиям многих генетических лабораторий мира ученые будут иметь в своем распоряжении полное описание генома человека.[1]

Цель проекта - выяснить последовательности азотистых оснований и положения генов (картирование) в каждой молекуле ДНК каждой клетки человека, что открыло бы причины наследственных заболеваний и пути к их лечению. В проекте заняты тысячи специалистов со всего мира: биологов, химиков, математиков, физиков и техников. Это один из самых дорогих научных проектов в истории. В 1990 г. на него потрачено 60 млн. долл., в 1991 г. - 135 млн., в 1992-1995 гг. - от 165 до 187 млн. в год, а в 1996-1998 гг. только США израсходовали 200, 225 и 253 млн.

Интерес к уже полученным результатам огромен: самые цитируемые в 1998 г. авторы (не только в генетике или биологии, но во всех областях науки) Марк Адамс и Крэйг Вентер из Института исследований генома в штате Мэриленд (США) - частной компании, занимающейся только составлением "генных карт".

 

Вехи проекта

 

Проект состоит из пяти основных этапов:

 

1. Составление карты, на которой помечены гены, отстоящие друг от друга не более, чем на 2 млн. оснований, на языке специалистов, с разрешением 2 Мб (Мегабаза - от английского слова "base" - основание);

 

2. Завершение физических карт каждой хромосомы с разрешением 0,1 Мб;

3. Получение карты всего генома в виде набора описанных по отдельности клонов (0,005 Мб);

 

4.К 2004 г. полное секвенирование ДНК (разрешение 1 основание);

 

5. Нанесение на карту с разрешением в 1 гб основание всех генов человека (к 2005 г.). Когда эти этапы будут завершены, исследователи определят все функции генов, а также биологические и медицинские применения результатов.

Три карты

 

В ходе проекта создают три типа карт хромосом: генетические, физические и секвенсовые (от англ. sequence - последовательность). Выявить все гены, присутствующие в геноме, и установить расстояния между ними - значит локализовать каждый ген в хромосомах. Такие генетические карты помимо инвентаризации генов и указания их положений ответят на исключительно важный вопрос о том, как гены определяют те или иные признаки организма. Ведь многие признаки зависят от нескольких генов, часто расположенных в разных хромосомах, и знание положения каждого из них позволит понять, как происходит дифференцировка (специализация) клеток, органов и тканей, а также успешнее лечить генетические заболевания. В 20-е и 30-е годы, когда создавалась хромосомная теория наследственности, выяснение положения каждого гена привело к тому, что на генетических картах сначала дрозофилы, а затем кукурузы и ряда других видов удалось отметить особые точки, как тогда говорили, "генетические маркеры" хромосом. Анализ их положения в хромосомах помог снабдить генетические карты хромосом человека новыми сведениями. Первые данные о положении отдельных генов появились еще в 60-е годы. С тех пор они множились лавинообразно, и в настоящее время известно положение уже десятков тысяч генов. Три года назад разрешение генетической карты составляло 10 Мб (для некоторых участков - даже 5 Мб).

Другое направление исследований - составление физических карт хромосом. Еще в 60-е годы цитогенетики стали окрашивать хромосомы, чтобы выявить на них особые поперечные полосы. После окрашивания полосы было видно в микроскоп. Между полосами и генами удалось установить соответствие, что позволило изучать хромосомы по-новому. Позже научились "метить" молекулы ДНК (радиоактивными или флуоресцентными метками) и следить за присоединением этих меток к хромосомам, что значительно повысило разрешение их структуры: до 2 Мб, а потом и до 0,1 Мб (при делении клеток). В 70-е годы научились "разрезать" ДНК на участки специальными «рестрикционными» ферментами, распознающими короткие отрезки ДНК, в которых информация записана в виде палиндромов - сочетаний, читаемых одинаково от начала к концу и от конца к началу. Так возникли «рестрикционные» карты хромосом. Использование современных физических и химических методов и средств улучшило разрешение физических карт в сотни раз.

Наконец, разработка методов секвенирования (изучения точных последовательностей нуклеотидов в ДНК) открыла путь к созданию секвенсовых карт с рекордным на сегодня разрешением (на этих картах будет указано положение всех нуклеотидов в ДНК).

 

 

Два подхода

 

Число хромосом и их длина различны у разных биологических видов. В клетках бактерий всего одна хромосома. Так, размер генома бактерии Mycoplasma genitalium 0,58 Мб (в нем 470 генов), у бактерии кишечной палочки (Escherichia coli) в геноме 4200 генов (4,2 Мб), у растения Arabi dopsis thaliana - 25 тыс. генов (100 Мб), у плодовой мушки Drosophila melanogaster - 10 тыс. генов (120 Мб). В ДНК мыши и человека 50-60 тыс. генов (3000 Мб). Конечно, для составления карт столь разных объектов одни и те же методы неприменимы, поэтому используют два разных по методологии подхода. В первом делят ДНК на небольшие куски и, изучив их по отдельности, воссоздают всю структуру, Этот подход увенчался успехом при составлении сравнительно простых карт. Для более сложных геномов эффективнее второй подход. В этих случаях неразумно делить молекулу ДНК на короткие куски, удобные для детального изучения. Их оказалось бы так много, что путаница в последовательностях была бы неразрешимой. Поэтому, принимаясь за расшифровку, молекулу делят, наоборот, на как можно более длинные куски и сравнивают их в надежде найти общие концевые участки. Если это удается, куски объединяют, после чего процедуру повторяют. С совершенствованием компьютеров и математических методов обработки информации объединенные по такому принципу куски становятся все крупнее, постепенно приближаясь к целой молекуле. Этот подход, в частности, позволил составить генетическую карту 3-й хромосомы дрозофилы.

 

Кладезь новых технологий

 

Важный аспект проекта «Геном человека» - разработка новых методов исследований. Еще до старта проекта был развит ряд весьма эффективных методов цитогенетических исследований (теперь их называют методами первого поколения). Среди них: создание и применение упомянутых рестрикционных ферментов. Получение гибридных молекул, их клонирование и перенос участков ДНК с помощью векторов в клетки-доноры (чаще всего - кишечной палочки или дрожжей). Синтез ДНК на матрицах информационной РНК. Секвенирование генов. Копирование генов с помощью специальных устройств. Способы анализа и классификации молекул ДНК по плотности, массе, структуре.

В последние 4-5 лет благодаря проекту "Геном человека" разработаны новые методы (методы второго поколения), в которых почти все процессы полностью автоматизированы. Почему это направление стало центральным? Самая маленькая хромосома клеток человека содержит ДНК длиной 50 Мб, самая большая (хромосома 1) - 250 Мб. До 1996 г. наибольший участок ДНК, выделяемый из хромосом с помощью реактивов, имел длину 0,35 Мб, а на лучшем оборудовании их структура расшифровывалась со скоростью 0,05-0,1 Мб в год при стоимости 1-2 долл. за основание. Иными словами, только на эту работу понадобилось бы примерно 30 тыс. дней (почти век) и 3 млрд. долларов.

Совершенствование технологии к 1998 г. повысило производительность до 0,1 Мб в день (36,5 Мб в год) и понизило стоимость до 0,5 долл. за основание. Использование новых электромеханических устройств, которые к тому же потребляют меньше реактивов, позволит уже в 1999 г. ускорить работы еще в 5 раз (к 2003 г. планируется довести скорость расшифровки до 500 Мб в год) и уменьшить стоимость до 0,25 долл. за основание (для человеческой ДНК еще дешевле).[2]



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: