Бином Ньютона - применение при решении примеров и задач.




Бином Ньютона - формула.

Формула бинома Ньютона для натуральных n имеет вид , где - биномиальные коэффициенты, представляющие из себя сочетания из n по k, k=0,1,2,…,n, а "!" – это знак факториала).

К примеру, известная формула сокращенного умножения "квадрат суммы" вида есть частный случай бинома Ньютона при n=2.

Выражение, которое находится в правой части формулы бинома Ньютона, называют разложением выражения (a+b)n, а выражение называют (k+1) -ым членом разложения, k=0,1,2,…,n.

К началу страницы

Коэффициенты бинома Ньютона, свойства биномиальных коэффициентов, треугольник Паскаля.

 

Треугольник Паскаля.

Биномиальные коэффициенты для различных n удобно представлять в виде таблицы, которая называется арифметический треугольник Паскаля. В общем виде треугольник Паскаля имеет следующий вид:

Треугольник Паскаля чаще встречается в виде значений коэффициентов бинома Ньютона для натуральных n:

Боковые стороны треугольника Паскаля состоят из единиц. Внутри треугольника Паскаля стоят числа, получающиеся сложением двух соответствующих чисел над ним. Например, значение десять (выделено красным) получено как сумма четверки и шестерки (выделены голубым). Это правило справедливо для всех внутренних чисел, составляющих треугольник Паскаля, и объясняется свойствами коэффициентов бинома Ньютона.

Свойства биномиальных коэффициентов.

Для коэффициентов бинома Ньютона справедливы следующие свойства:

· коэффициенты, равноудаленные от начала и конца разложения, равны между собой , p=0,1,2,…,n;

· ;

· сумма биномиальных коэффициентов равна числу 2, возведенному в степень, равную показателю степени бинома Ньютона: ;

· сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме биномиальных коэффициентов, стоящих на нечетных местах.

Первые два свойства являются свойствами числа сочетаний.

К началу страницы

Доказательство формулы бинома Ньютона.

Приведем доказательство формулы бинома Ньютона, то есть докажем справедливость равенства .

Воспользуемся для доказательства методом математической индукции.

1. Проверим справедливость разложения для какого-нибудь n, допустим, для n = 3.

Получили верное равенство.

2. Предположим, что равенство верно для n-1, то есть, что справедливо равенство .

3. Докажем, что верно равенство , основываясь на предположении второго пункта.

Поехали!

Раскрываем скобки

Группируем слагаемые

Так как и , то ; так как и , то ; более того, используя свойство сочетаний , получим

Подставив эти результаты в полученное выше равенство

придем к формуле бинома Ньютона .

Этим доказана формула бинома Ньютона.

К началу страницы

Бином Ньютона - применение при решении примеров и задач.

Рассмотрим подробные решения примеров, в которых применяется формула бинома Ньютона.

Пример.

Напишите разложение выражения (a+b)5 по формуле бинома Ньютона.

Решение.

Смотрим на строку треугольника Паскаля, соответствующую пятой степени. Биномиальными коэффициентами будут числа 1, 5, 10, 10, 5, 1. Таким образом, имеем .

Пример.

Найдите коэффициент бинома Ньютона для шестого члена разложения выражения .

Решение.

В нашем примере n=10, k=6-1=5. Таким образом, мы можем вычислить требуемый биномиальный коэффициент:

В заключении рассмотрим пример, в котором использование бинома Ньютона позволяет доказать делимость выражения на заданное число.

Пример.

Доказать, что значение выражения , где n – натуральное число, делится на 16 без остатка.

Решение.

Представим первое слагаемое выражение как и воспользуемся формулой бинома Ньютона:

Полученное произведение доказывает делимость исходного выражения на 16.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-10-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: