Управление процессами и нитями




Введение

Операцио́нная систе́ма, сокр. ОС (англ. operating system, OS) — комплекс взаимосвязанных программ, предназначенных для управления ресурсами компьютера и организации взаимодействия с пользователем.

ОСНОВНЫЕ ФУНКЦИИ И ВИДЫОПЕРАЦИОННЫХ СИСТЕМ


Для решения любой задачи на компьютере необходимы, по крайней мере, два вида ресурсов: оперативная память для хранения программы и данных и процессор для исполнения команд. Указанные ресурсы могут быть предоставлены задаче самим пользователем, если он вручную разместит в основной памяти программу и данные и введет в машину информацию для запуска процессора. Однако такой способ не приемлем для больших программ, т.к. является очень трудоемким и медленным. Дело в том, что элементарные операции при работе с устройствами компьютера и по управлению его ресурсами - это операции очень низкого уровня, состоящие из нескольких сотен и тысяч элементарных команд.

Операционная система освобождает пользователя от долгой и кропотливой работы, связанной с распределением ресурсов компьютера, управлением устройствами, организацией выполнения программ, выполняя эти действия автоматически.

Основными функциями ОС являются следующие:

· запуск программ и контроль за их прохождением;

· управление оперативной памятью;

· управление устройствами ввода и вывода;

· управление внешней памятью;

· управление взаимодействием одновременно работающих задач;

· обработка вводимых команд для обеспечения взаимодействия с пользователем.

Операционная система обычно состоит из управляющей части и набора системных программ (обслуживающая часть).

Управляющая часть содержится в нескольких файлах. Ее функциями являются: распределение вычислительных ресурсов, запуск и контроль выполнения программ, управление стандартными внешними устройствами, управление файлами. Для обеспечения работы с дополнительными внешними устройствами в состав управляющей части операционной системы входят драйверы. Это очень небольшие программы, которые позволяют работать с конкретными внешними устройствами. Наличие драйверов позволяет подключать к компьютеру различные типы внешних устройств, причем для этого не нужно коренным образом перестраивать вычислительную среду, а достаточно включить в состав ОС определенный драйвер.

В набор системных программ входят программы, также поставляемые в виде отдельных файлов. Они выполняют действия обслуживающего характера, расширяющие возможности ядра операционной системы, предоставляющие дополнительные возможности и удобства пользователю.

Для нормальной работы компьютера определенная часть операционной системы, называемая резидентной, должна постоянно находиться в основной памяти, сокращая, таким образом, объем памяти, доступный для прикладных программ. Другие части системы автоматически загружаются в память из внешних устройств по мере необходимости. После выполнения требуемых действий занимаемые ими области памяти освобождаются.

Существующие операционные системы принято классифицировать следующим образом. По числу одновременно обслуживаемых рабочих мест ОС разделяются на однопользовательские и сетевые.

По количеству одновременно выполняемых программ выделяют однозадачные и многозадачные ОС. В однозадачном режиме все ресурсы компьютера предоставляются только одной программе, которая выполняет обработку данных. При работе в многозадачном (мультипрограммном) режиме несколько не зависимых друг от друга программ выполняют обработку данных одновременно, т.е. параллельно. При этом программы делят ресурсы компьютера между собой.

Ядро ОС

Ядро операционной системы - Это центральная часть операционной системы, обеспечивающая приложениям координированный доступ к ресурсам компьютера, таким как процессорное время, оперативная память, внешнее оборудование. Обычно предоставляет сервисы файловой системы. Ядро также выполняет следующие функции: • управляет всей операционной системой; • содержит: драйверы устройств, подпрограммы управления памятью, планировщик заданий; • реализует системные вызовы и т.п. Все операции, связанные с процессами, выполняются под управлением

той части операционной системы, которая называется ядром. Ядро представляет собой лишь небольшую часть кода операционной системы в целом, однако оно относится к числу наиболее интенсивно используемых компонент системы. По этой причине ядро обычно размещается в основной памяти, в то время как другие части операционной системы перемещаются во внешнюю память и обратно по мере необходимости.

Одной из самых важных функций является обработка прерываний. Когда ядро обрабатывает текущее прерывание, оно запрещает другие прерывания и разрешает их снова только после завершения обработки текущего прерывания. При постоянном потоке прерываний может сложиться такая ситуация, что ядро будет блокировать прерывания в течение значительной части времени, т. е. не будет иметь возможности эффективно реагировать на прерывания.

Архитектура MAC OS

Рисунок 1 Архитектура Mac OS

Систему, по-видимому, можно разделить на несколько подсистем, каждая из которых выполняет управление определенным видом ресурсов (памятью, задачами, файлами, средствами коммуникаций и т.д.). Подсистема состоит из нескольких Менеджеров, каждый их которых обеспечивает более высокий уровень абстракции ресурсов. Менеджеры более высокого уровня используют средства Менеджеров низкого уровня своей подсистемы, а также и других подсистем. API же системы предоставляет доступа к возможностям практически любого уровня абстракции. На рисунке 8.2, например, показана структура подсистемы управления взаимодействием процессов.

Управление памятью

При работе с реальной памятью Mac OS обеспечивает работу с адресным пространством размером 16 Мбайт (24-разрядный адрес). Разумеется, все адресное пространство не обязательно поддерживается реальной памятью, заполнение адресного пространства реальной памятью может быть фрагментировано. До 8 Майт в верхней части адресного пространства составляет пространство ввода-вывода.

Память в такой модели выделяется разделами. Нижняя часть памяти (от адреса 0) составляет системный раздел. В нем размещены глобальные переменные системы и системная куча. В системной куче выделяется память для буферов, системных структур данных и системных кодовых сегментов.

Каждому приложению выделяется раздел приложения. В разделе приложения содержится:

· управляющая информация приложения, так называемый "мир A5" (A5 world);

· стек приложения;

· куча приложения.

"Мир A5" (название происходит от имени регистра микропроцессора M 68К, который используется для адресации) содержит:

· глобальные переменные приложения;

· глобальные переменные QuickDraw (подсистемы экранного отображения);

· параметры приложения;

· таблицу переходов.

Стек приложения используется для сохранения адресов возврата и выделения памяти для локальных переменных. В куче размещаются коды и данные приложения. Кроме того, приложению могут выделяться по запросу блоки памяти вне его раздела.

Память в куче выделяется блоками переменной длины. Блоки могут быть перемещаемыми или неперемещаемыми. Обращение к неперемещаемому блоку производится по прямому адресу. Обращение к перемещаемому блоку производится с применением косвенной адресации через, так называемый, главный блок указателей (master pointer block). Для каждого приложения система создает такой блок определенного по умолчанию размера, размер блока может быть увеличен самим приложением. Такой способ выделения памяти приводит к образованию "внешних дыр", которые могут уменьшать объем доступной для приложения памяти. Для борьбы с этим явлением система производит (при нехватке памяти) дефрагментацию кучи - переписывает в памяти все перемещаемые блоки таким образом, чтобы внешние дыры слились в одну свободную область в верхней части кучи. При переносе блоков корректируется главный блок указателей, таким образом, перенос остается прозрачным для приложения. Наличие в куче неперемещаемых блоков снижает эффективность сжатия кучи, поэтому система стремится разместить все перемещаемые блоки в нижней части кучи. Если при размещении перемещаемого блока оказывается, что то место в нижней части кучи, на которое он претендует, занято перемещаемым блоком, система переносит перемещаемый блок в другое место и освобождает место для неперемещаемого.

Перемещаемый блок может также быть объявлен удаляемым: системе разрешается удалять его при нехватке памяти в куче приложения. Работая с удаляемым блоком, программист должен всякий раз, начиная работу с ним, проверить его наличие в памяти и отменить признак, разрешающий удаление.

Введение в компьютеры фирмы Apple динамической трансляции адресов позволило перейти к 32-разрядному размеру адреса и, таким образом, обеспечивать виртуальное адресное пространство размером в 4 Гбайт. Динамическая трансляция адресов использует страничную модель виртуальной памяти для расширения адресного пространства. Страничный обмен использует алгоритм LRU. Структура нижней части адресного пространства (до границы 16 Мбайт) - такая же, как и в 24-разрядной модели, что обеспечивает прозрачное выполнение 24-разрядных приложений в новой среде. Для 32-разрядных приложений могут выделяться дополнительные разделы выше 16-Мбайтной границы.

В описанной выше модели реальной памяти, расширенной затем за счет динамической трансляции адресов, сложилась сегментная архитектура выполнения приложений, которую называют "классической" архитектурой 68K. Приложение в этой архитектуре состоит из сегментов размером до 32 Кбайт каждый. Сегментная архитектура поддерживается Менеджером Сегментов в составе Mac OS. Для каждого приложения автоматически создается и загружается при запуске Сегмент 0, остальные сегменты загружаются по требованию.

Связь между сегментами обеспечивается через таблицу переходов (jump table), которая размещается вместе с "миром A5". Таблица переходов содержит адреса входных точек в сегментах, таким образом, обращения к процедурам в других сегментах производятся через таблицу переходов. Сегменты размещаются в перемещаемых блоках памяти в куче приложения и, таким образом, могут быть перемещены в памяти с коррекцией содержимого таблицы переходов. Загрузка сегментов производится автоматически при первом обращении к любой входной точке сегмента. Сегмент может быть также и выгружен из памяти, но это приложение должно сделать явным образом: выполнить системный вызов, помечающий сегмент как удалаямый. Помеченный таким образом сегментный блок может быть удален из памяти при нехватке памяти.

Управление процессами и нитями

Mac OS во всех своих версиях являлась системой с кооперативной многозадачностью. Процессом в системе является запущенное приложение или, в некоторых случаях, открытый аксессуар рабочего стола. В каждый момент только один процесс находится на переднем плане - тот, с которым взаимодействует пользователь, остальные являются фоновыми. Возможны также только-фоновые процессы, разработанные без пользовательского интерфейса. Переключение процессов происходит только в том случае, если процесс переднего плана приостанавливается, если он выдает системный вызов WaitNextEvent или EventAvail, но в системной очереди событий нет для него сообщений. Только при выполнении этих системных вызовов возможно переключение контекста. Различается переключение контекста значительное (major) и незначительное (minor). Первое происходит в том случае, если фоновый процесс становится процессом переднего плана. В этом случае ОС посылает процессу переднего плана "событие приостановка". Обрабатывая это событие, процесс переднего плана может выполнить требуемые прикладные операции, связанные с переходом на задний план. Когда процесс переднего плана в следующий раз выдаст системный вызов WaitNextEvent или EventAvail, он будет задержан. Фоновый процесс в этом случае получает от ОС "событие возобновления". Незначительное переключение происходит, когда фоновый процесс получает процессорное обслуживание, не переходя на передний план, например, когда процесс переднего плана ожидает действий пользователя. В этом случае, когда происходит событие, которого ожидает процесс переднего плана, фоновый процесс приостанавливается при следующей выдаче им системного вызова WaitNextEvent или EventAvail, независимо от того, есть ли для него сообщения в системной очереди событий.

Другой формой, использующей процессорный ресурс, являются в Mac OS задачи (task). Задачи представляют собой обработчики прерываний. Приложение имеет возможность установить собственную обработку некоторых прерываний. Пользовательская обработка прерываний поддерживается:

· Менеджером Времени, который позволяет приложению выполнять задачи через заданные интервалы времени;

· Менеджером Регенерации (Vertical Retrace Task), который позволяет выполнять задачи между циклами восстановления изображения на экране;

· Менеджером Уведомления (Notification Manager), который обеспечивает как для процессов, так и для задач авральную сигнализацию пользователю (например, в случае ошибки);

· Менеджером Устройств, который дает возможность драйверам обрабатывать прерывания от устройств.

Все эти менеджеры используют установленную приложениями информацию о задачах, помещаемую в системные очереди.

Когда задача получает управление, она не обязательно выполняется в контексте приложения, создавшего данный обработчик прерывания. Поэтому действия, выполняемые в составе задачи, существенно ограничены, и для установления связи обработчика прерывания с создавшим его приложением должны быть выполнены определенные специальные действия. Некоторые обработчики прерываний не деинсталлируются автоматически при завершении установивших их приложений.

Mac OS обеспечивает также механизм нитей. Нить, как и в большинстве других систем, имеет собственный вектор состояния процессора и собственный стек. Нити могут создаваться по отдельности или же может быть сначала создан пул нитей, а затем новые нити создаются из пула. Второй вариант обеспечивает более рациональное использование ресурсов, в частности, меньшую фрагментацию памяти. В первой реализации Менеджера Нитей поддерживалась вытесняющая много-поточность в рамках не вытесняющей многозадачности, но затем дисциплину управления нитями сделали также кооперативной. Нить, получившая процессорное обслуживание, может отдать его либо уступив процессор любой нити (в этом случае готовые к выполнению нити выбираются из очереди по дисциплине FCFS), либо уступив процессор какой-то конкретной нити, либо просто изменив свое состояние на ожидание. Отличие последнего случая от первых двух состоит в том, что выполнение нити приостанавливается даже если нет других готовых нитей. Пользователь имеет возможность также определить свою процедуру диспетчеризации нитей, которая выполняется перед выполнением системного планировщика.

Хотя при невытесняющей многозадачности в этом нет необходимости, предусмотрены специальные системные вызовы - скобки критической секции. Внутри критической секции просто игнорируются выдаваемые нитью системные вызовы, уступающие процессор.

Интересной особенностью Mac OS является возможность создания также пользовательских процедур переключения контекста для нитей. Для каждой нити может быть создано две таких процедуры, одна из них выполняется перед переключением контекста на другую нить, вторая - при переключении контекста на данную нить.

Поскольку Mas OS работает на двух разных аппаратных платформах, имеются некоторые различия в форматах структур данных для платформ M68K и PowerMac (например, в PowerMac роль регистра A5 играет другой регистр), но эти различия не касаются качественной структуры и алгоритмов обработки. Системы программирования для Mac OS позволяют создавать программы в кодах той или другой платформы, системой поддерживается также программные ресурсы "толстого" (fat) формата, содержащие код программы для обеих платформ и, следовательно, переносимые без каких-либо дополнительных действий.

Средства взаимодействия

Mac OS предусматривает весьма развитые механизмы взаимодействия между процессами, основанные прежде всего на очередях сообщений (в Apple они называются событиями) и одинаково применимые для локального и для удаленного взаимодействия. Эти механизмы обеспечиваются набором менеджеров в составе ОС, которые выстраиваются в иерархическую структуру: менеджер более высокого уровня пользуется услугами менеджеров нижних уровней

Рисунок 2. Средства взаимодействия приложений в Mac OS

Приложение может пользоваться услугами менеджеров любого уровня иерархии, что обеспечивает широкий спектр возможностей взаимодействия, включающий в себя:

· Динамическое разделение данных, обеспечиваемое Менеджером Публикации (Edition Manager). Позволяет приложению копировать данные из одного документа (издателя) в другой документ (подписчик) с автоматическим обновлением данных у подписчика, если они изменены у издателя.

· Обмен "событиями Apple". События Apple - высокоуровневые события, которые соответствуют протоколу AEIMP (Apple Event Interprocess Messaging Protocol), обеспечиваемому Менеджером Событий Apple. Средства Менеджера Событий Apple позволяют приложению-клиенту формировать и посылать события Apple, представляющие собой обычно некоторый запрос на обслуживание, а приложению-серверу - принимать события и отвечать на них. Имеется несколько стандартных комплектов событий Apple (обязательный комплект, комплект ядра, комплекты текста и базы данных), применение которых обеспечивает взаимодействие несвязанных приложений. Наряду с событиями стандартных комплектов пользователями могут вводиться собственные события Apple, интерпретируемые самими приложениями.

· Обмен другими событиями. Менеджер Событий обеспечивает для приложений обмен событиями, не соответствующими протоколу AEIMP.

· Обмен блоками сообщений. Средства PPC (Program-to-Program Communications) позволяют приложениям обмениваться большими блоками данных на низком уровне управления. При применении этих средств приложения, участвующие в диалоге, должны выполняться одновременно и обмениваться данными через общий коммуникационный порт.

Отдельно следует назвать скрипты, функциональность которых выходит за рамки только взаимодействия между процессами. Скрипт представляет собой, фактически, программу, написанную на интерпретирующем языке высокого уровня AppleScript. Скрипты могут быть записаны в приложения, в документы или в отдельные файлы, загружаемые системным загрузчиком Finder. С точки зрения использования скриптов различаются следующие свойства приложений.

· Приложения, выполняющие скрипты (scriptable). Такое приложение способно реагировать на стандартные события Apple, посылаемые интерпретатором AppleSkript, и, следовательно, выполнять действия, определенные в скрипте. При посылке сообщения такому приложению интерпретатор использует специальный ресурс типа "aete" (Apple event terminology extention), в котором описывается соответствие высокоуровневого описания терминов, используемых в скрипте, кодам событий Apple, которые обрабатывает приложение.

· Регистрирующие приложения (recordable). Такое приложение посылает события самому себе. Обычно через события обеспечивается связь вычислительной части приложения с частью, обеспечивающей пользовательский интерфейс. Параллельно с передачей события между частями регистрирующего приложения копия события поступает интерпретатору, который, пользуясь ресурсом типа "aete", записывает действия, определяемые данным событием, в виде скрипта.

· Приложения, выполняющие скрипты и манипулирующие ими. Приложение может записывать и выполнять скрипты, устанавливая соединение с интерпретатором языка скриптов как с подключением (plug-in).

· В одном приложении могут объединяться все три описанные свойства.

Мы говорили о языке AppleScript, однако на самом деле механизм скриптов более гибок. Он строится по принципу Открытой Архитектуры Скриптов OSA (Open Scripts Architecture). OSA допускает использование любых языков для написания скриптов. Интерпретатор того или иного языка скриптов является выбираемым компонентом. Менеджер Компонентов выбирает заданный компонент для выполнения того или иного скрипта. Интерпретатор AppleScript, таким образом, является лишь одним из возможных компонентов в системе OSA.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-12-19 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: